
  

Asymptotic Stability in a Controlled Stochastic 
Lotka-Volterra Model with Lévy Noise 

 

Cutberto Romero-Mele ndez1*, David Castillo-Ferna ndez2, Leopoldo Gonza lez-Santos2 

1 Basic Sciences Department, Metropolitan Autonomous University, Mexico. 
2 Neurobiology Institute, National Autonomous University of Mexico, Me xico. 
 
* Corresponding author. Tel.: +52 5534359640; email: cutberto@azc.uam.mx (C.R.-M.) 
Manuscript submitted July 8, 2024; revised September 20, 2024; accepted October 17, 2024; published 
January 17, 2025. 
doi: 10.17706/ijapm.2025.15.1.1-12 
 

Abstract: We consider a stochastic Lotka-Volterra model for one-predator-two- prey with driven by noise 

and Le vy jumps. The objective of the paper is to study this Lotka-Volterra model introducing controls on the 

deterministic part and on the Le vy noise, by means of Lyapunov approaches functions techniques. 

Assuming linear growth and Lipschitz conditions in the drift and diffusion terms, we prove the 

boundedness and the exponential stability of its solutions. 
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1. Introduction 

In mathematical ecology, the Lotka-Volterra systems represent one of the most important models to 

describe population dynamics, because they describe very well many aspects of interactions between 

species predator-prey in competition, such as persistence, extinction, limit cycles and stability of its 

solutions [1–3]. When it is introduced control functions in this model, we arrive to study most completely 

the ecosystem and we can steer the system from an initial configuration to a final configuration. These 

models are more realistic if we consider natural random environmental variations, considering some 

stochastic process, as Wiener processes or even better, Le vy jumps, which model aleatory environmental 

fluctuations in the nature such that hazardous waste pollution or cyclonic storms, by instance. Le vy 

processes are stochastic processes with stationary and independent increments, like sub-martingales or 

Markov processes, that is, they are processes ξ(t) such that ξ(t+s)−ξ(s) and ξ(r) are independent 

distributions with the same probability, for s, t ≥ 0 and 0 ≤ r ≤ t and they can be thought of as random walks 

in continuous time [4]. Many papers have studied stochastic Lotka-Volterra models with jumps, analyzing 

persistence, extinction, boundedness, local stability and more properties [5–7]. The Lotka-Volterra 

equations have also been applied to laser physics (optical and photonic devices), to describe population 

inversion and the number of emitted photons, as in [8]. In this case, the authors study their regions of 

stability and the transformation of a fixed point into a limit cycle. In Ref. [9], the authors consider a 

competitive Lotka-Volterra population dynamics with jumps without control functions and they investigate 

the sample Lyapunov exponent for each component of the solution and uniform boundedness of the p−th 

moment with p > 0. Also, in Ref. [10] was studied the asymptotic convergence of a general stochastic 

population dynamics of the type Lotka-Volterra and driven by Le vy noise, given some important asymptotic 

path-wise estimation assuming different conditions over the Poisson’s process coefficient, but they don’t 

International Journal of Applied Physics and Mathematics

1 Volume 15, Number 1, 2025



  

consider any control functions in the processes. In Ref. [11], the authors find conditions under which the 

solutions to the stochastic differential equations driven by Le vy noise are moment exponentially stable, 

without any control functions in the processes. Our main results in this paper are: the boundedness of 

solutions of the stochastic model (Theorem 2) and the exponential stability of the solutions of the system 

(1), around the static solution (Theorem 3). 

2. Problem Formulation 

The model to consider here is a controlled jump diffusion process given by the following non-linear 

stochastic ordinary differential equations system with initial and final conditions: 

 

𝑑𝑥 =   𝑓 (𝑡, 𝑥(𝑡), 𝑢(𝑡))𝑑𝑡 +  𝑔(𝑡, 𝑥(𝑡), 𝑢(𝑡))𝑑𝑊(𝑡) 

                                                               +𝑥(𝑡)𝑢(𝑡) ∫ 𝛾(𝑡, 𝑥(−), 𝑧)𝑁̃(𝑑𝑡, 𝑑𝑧),
ℝ3                                               (1) 

 

  x1(0) = x10, x2(0) = x20, x3(0) = x30, 

  x1(T) = x11, x2(T ) = x21, x3(T ) = x31,                    (2) 

 

where f : [0, T ] × R3 × R3 → R3, given by 

 

                       f (t, x, u) = (f 1(t, x, u), f 2(t, x, u), f 3(t, x, u))T,                          (3) 

 

is a measurable function called the drift, the process u : R → R3, 

 

 𝑢(𝑡)  =  (𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡)),                               (4) 
 

is a measurable and bounded function called the control, which belongs to a region control 𝑈 ∈  𝑅3  and 

it is an adapted and cadlag function (continuous on the right and limit on the left), and g(t, x, u), a 

measurable function defined also on [0, 𝑇]  × ℝ3 × ℝ3 and ℝ3×3-valued (3 × 3 - real matrix), 

 

𝑔(𝑡, 𝑥, 𝑢)  =  (𝑔1(𝑡, 𝑥, 𝑢), 𝑔2(𝑡, 𝑥, 𝑢), 𝑔3(𝑡, 𝑥, 𝑢)),                         (5)   

 

where 

 

𝑔𝑗 (𝑡, 𝑥, 𝑢)  =  (𝑔1𝑗(𝑡, 𝑥, 𝑢), 𝑔2𝑗(𝑡, 𝑥, 𝑢), 𝑔3𝑗(𝑡, 𝑥, 𝑢))𝑇 , 1 ≤  𝑗 ≤  3,     (6) 

 

called the diffusion coefficient and for the compensated Poisson random measure 𝑁̃(𝑑𝑡, 𝑑𝑧), we write, 

according to Le vy decomposition theorem, [12], 

 

𝑁̃(𝑑𝑡, 𝑑𝑧)  =  (𝑁̃1(𝑑𝑡, 𝑑𝑧), 𝑁̃2(𝑑𝑡, 𝑑𝑧), 𝑁̃3(𝑑𝑡, 𝑑𝑧)),       (7) 

 

and 

 

𝑁̃𝑗(𝑑𝑡, 𝑑𝑧)  =  𝑁̃𝑗(𝑑𝑡, 𝑑𝑧)  − 𝜈𝑗  (𝑑𝑧𝑗)𝑑𝑡, 1 ≤  𝑗 ≤  3,       (8) 

 

with 𝑁𝑗(𝑑𝑡, 𝑑𝑧)  Poisson counting measure and 𝑥𝑖(𝑡−)  denotes the left hand limit of 𝑥  at time 𝑡 . 

Specifically, we consider the following functions 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡)), 𝑔(𝑡, 𝑥(𝑡), 𝑢(𝑡)): 
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𝑓(𝑡, 𝑥, ℎ) =  (

𝑥1(𝑡)  −  𝛽 𝑥1(𝑡)𝑥2(𝑡)  −  𝛿𝑥1(𝑡)𝑥3(𝑡)  −  𝐴1𝑥1(𝑡)𝑢1(𝑡)
𝑥2(𝑡)  −  𝛽 𝑥2(𝑡)𝑥1(𝑡)  −  𝜖𝑥2(𝑡)𝑥3(𝑡)  − 𝐴2𝑥2(𝑡)𝑢2(𝑡)

−𝑥3(𝑡)  −  𝛿 𝑥3(𝑡)𝑥1(𝑡)  −  𝜖𝑥3(𝑡)𝑥2(𝑡)  − 𝐴3𝑥3(𝑡)𝑢3(𝑡)
),      (9) 

 

𝑔(𝑡, 𝑥, 𝑢) =  (
𝛼1 0 0
0 𝛼2 0
0 0 𝛼3

).                                     (10) 

 

where η, ω, κ are positive constants in (0, 1], being the intrinsic growth rates of two preys and predator 

population, respectively, β, δ, η, and 𝜖 in (0, 1], are positive constants meaning the contact rates per unit of 

time between prey-prey, predator-first prey and predator-second prey, respectively. 𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡) are 

the controls, representing, by example by the hunting in each population, for which we have modulated 

their effect with constants 𝐴1, 𝐴2, 𝐴3 ∈  (0, 1]. To take into account environmental fluctuations on the prey 

and the predator populations we introduce standard independents Wiener processes 

𝑊1(𝑡), 𝑊2(𝑡), 𝑊3𝑊(𝑡)  with parameters 𝛼1, 𝛼2, 𝛼3 ∈ (0, 1] , respectively, in three independent random 

variations for each population, defined over a probability space (Ω, ℱ, 𝑃) and, finally, 𝑁(𝑡) is a Poisson 

process independent of 𝑊(𝑡). In the above, as is conventional, P denotes a probability measure in the 

sample space Ω of the stochastic process X : [0, T] × Ω → [0, +∞) and E[X] denotes the expected value with 

respect to the probability measure P, that is, the integral 𝐸[𝑋𝑇] = ∫ 𝑋𝑇(𝜔)𝑑𝑃(𝜔)
Ω

 in the sense of Lebesgue 

integration. ℱ𝑠 denotes the σ-algebra generated by all random variables 𝑋𝑖 with i ≤ s; the collection of 

such σ-algebras forms a filter of the probability space. The class of admissible controls 𝑈 is the set of 

𝐹𝑠-predictable processes with values in U. 

Our study will permit to develop techniques to control random variations of some ecosystems and 

sudden changes in the environment, like Lyapunov approach or geometric techniques of Control 

Theory  [13], as part of an optimal and general strategy for the preservation of species and the harvest of 

any renewable resource as some animals or plants. 

Considering the stochastic differential system (1), in order to guarantee the existence and uniqueness of 

solutions, we assume the following hypothesis related with the Lipschitz and linear growth conditions in 

the x variable, for 𝑓(𝑥, 𝑡, 𝑢), 𝑔(𝑥, 𝑡, 𝑢)  and ℎ ∶  ℝ3  → ℝ3  the jump coefficient or Poisson’s process 

coefficient, defined by 

 

ℎ(𝑥, 𝑡, 𝑢)  =  ∫ 𝛾 (𝑡, 𝑥, 𝑧)
𝑅3 𝑁̃(𝑑𝑡, 𝑑𝑧).             (11) 

 

(H1) There exist constants 𝜅1 < ∞ and 𝜅2 < ∞ such that 𝑓(𝑥, 𝑡, 𝑢), 𝑔(𝑥, 𝑡, 𝑢) and ℎ(𝑥, 𝑡, 𝑢) satisfy: 

a) At most linear growth condition: 

 

|| 𝑓(𝑥, 𝑡, 𝑢) || 2 ≤  𝜅1 (1 + || 𝑥 ||2 ), 

|| 𝑔(𝑥, 𝑡, 𝑢) ||2  ≤  𝜅1 (1 + || 𝑥 || 2), 

∫ ||𝛾 (𝑡, 𝑥, 𝑧) || 2 𝑁̃(𝑑𝑡, 𝑑𝑧)
𝑅3  ≤  𝜅1 (1 + || 𝑥 ||2 ).          (12) 

 

b) Lipschitz continuity: 

 

|| 𝑓(𝑥, 𝑡, 𝑢)  −  𝑓(𝑦, 𝑡, 𝑢) || 2 ≤  𝜅2 || 𝑥 −  𝑦 ||2 , 

|| 𝑔(𝑥, 𝑡, 𝑢)  −  𝑔(𝑦, 𝑡, 𝑢) ||2  ≤  𝜅2 || 𝑥 −  𝑦 ||2 , 

∫ ||𝛾 (𝑡, 𝑥, 𝑧)  −  𝛾 (𝑡, 𝑦, 𝑧) ||2 𝑁̃(𝑑𝑡, 𝑑𝑧)
𝑅3  ≤  𝜅2 || 𝑥 −  𝑦 ||2 .         (13) 
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(H2) Controls are bounded: there exists 𝜅3  <  ∞, such that ∀𝑡 ∈  𝑅: 

 

|| 𝑢(𝑡) ||  ≤  𝜅3 .             (14) 

 

(H3) Jump is locally bounded: for all bounded sets 𝑀 ⊂  𝑅3: 

 

𝑠𝑢𝑝𝑥∈𝑀 𝑠𝑢𝑝0≤|𝑧|≤𝑐  |𝛾 (𝑠, 𝑥(𝑠−), 𝑧) |  <  ∞.           (15) 

 

Assumptions (H1) and (H2) are reasonable in this model, since the controls represent population hunting, 

which cannot be excessive, and the size of the jump must also be limited. Finally, we consider the solution of 

the static problem corresponding to system (1), called 𝑥̃(𝑡). We claim the boundedness of solutions of the 

stochastic model and the exponential stability of the solutions of the system (1), around the static solution 

𝑥̃(𝑡). 

3. Exponential Stability 

As usual, we introduce a Lyapunov function, which is a Ito-Le vy process 𝑉 (𝑥, 𝑡)  ∈  𝐶2,1 (ℝ3 ×  ℝ+ ; ℝ+), 

where 𝐶2,1 (ℝ3 ×  ℝ+ ; ℝ+),  is the family of all non-negative functions 𝑉 (𝑥, 𝑡),  continuously twice 

differentiable in x and once in t, defined on ℝ3 × ℝ+, which guarantees the stability of the solution of the 

general stochastic differential Eq. (1), and also we introduce the linear operator or diffusion operator 𝐿 ∶

 ℝ+ × ℝ𝑛  →  ℝ, acting on 𝑉 (𝑥, 𝑡), defined as following: 

 

𝐿𝑉(𝑡, 𝑥)  =  
𝜕𝑉

𝜕𝑡
(𝑡, 𝑥)  + ⟨

𝜕𝑉

𝜕𝑥
(𝑡, 𝑥), 𝑓(𝑡, 𝑥, 𝑢)  ⟩ 

 

+
1

2
𝑡𝑟𝑎𝑐𝑒 (𝑔𝑇(𝑡, 𝑥)

𝜕2𝑉

𝜕𝑥2
(𝑡, 𝑥)𝑔(𝑡, 𝑥) 

 

+𝑥(𝑡)𝑢(𝑡) ∫ { 𝑉 ( 𝑡, 𝑥(𝑡−)  +  𝛾 (𝑥, 𝑡) ) 
|𝑧|<𝑐

 

 

 −𝑉(𝑡, 𝑥(𝑡 −) − 𝛾𝑖(𝑥, 𝑡))
𝜕𝑉

𝜕𝑥
(𝑥, 𝑡)𝜈(𝑑𝑧).          (16) 

 

where 𝑐 ∈  (0, ∞) is the maximum jump size. 

Also, we define the following controlled processes [11, 14], which will appear in the proof of the 

exponential stability of the solution of our optimal control problem: 

 

𝐼1(𝑡)  =  𝑥(𝑡)𝑢(𝑡) ∫ ∫
𝑉 (𝑥(𝑠)  +  𝜉 (𝑥, 𝑠, 𝑧))  −  𝑉 (𝑥(𝑠))

𝑉 (𝑥(𝑠))|𝑧|<𝑐

 
𝑡

0

 

 

−
𝜉𝑖(𝑥,𝑠,𝑧)

𝑉 (𝑥(𝑠))
 𝑉𝑥(𝑥(𝑠))𝜈(𝑑𝑧)𝑑𝑠.               (17) 

 

𝐼2(𝑡)  =  𝑥(𝑡)𝑢(𝑡) ∫ ∫ (𝑙𝑜𝑔
𝑉 (𝑥(𝑠) +  𝜉 (𝑥, 𝑠, 𝑧))

𝑉 (𝑥(𝑠))
+ 1

|𝑧|<𝑐

 
𝑡

0
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−
𝑉(𝑥(𝑠)+ 𝜉𝑖(𝑥,𝑠,𝑧))

𝑉 (𝑥(𝑠))
 𝜈(𝑑𝑧)𝑑𝑠).              (18) 

 

𝐼(𝑡)  =  𝑥(𝑡)𝑢(𝑡) ∫ ∫ log (
𝑉 (𝑥(𝑠) +  𝜉 (𝑥, 𝑠, 𝑧)) − 𝑉(𝑥(𝑠))

𝑉 (𝑥(𝑠))|𝑧|<𝑐

𝑡

0

 

 

−
𝜉𝑖(𝑥,𝑠,𝑧))

𝑉 (𝑥(𝑠))
 𝑉𝑥(𝑥(𝑠))𝜈(𝑑𝑧)𝑑𝑠.           (19) 

 

We note that, since 𝑙𝑜𝑔(𝑡)  ≤  𝑡 −  1, we have 

 

𝐼2(𝑡)  <  0, ∀𝑡 ≥  0.          (20) 

 

Now, since 𝐼2 = 𝐼1  − 𝐼 , |𝐼2|  ≤  |𝐼1|  + | 𝐼 | , and 𝐼(𝑡)  <  ∞ , 𝐼1(𝑡)  <  ∞,  we deduce the following 

property that guarantees the boundedness of process 𝐼2(t) and that will be crucial in the proof of the 

exponential stability of the solutions of our model. 

Lemma 1. Assume that the hypotheses (H3) is satisfied. Then, for all 𝑡 ≥  0 

 

𝐼2(𝑡)   <  ∞.            (21) 

 

Proof. The proof is very similar to the case presented in [11], adapted to our controlled process 

 

𝐼2(𝑡)  =  𝑥(𝑡)𝑢(𝑡) ∫ ∫ (𝑙𝑜𝑔
𝑉 (𝑥(𝑠) +  𝜉 (𝑥, 𝑠, 𝑧))

𝑉 (𝑥(𝑠))
+ 1

|𝑧|<𝑐

 
𝑡

0

 

 

−
𝑉(𝑥(𝑠)+ 𝜉𝑖(𝑥,𝑠,𝑧))

𝑉 (𝑥(𝑠))
 𝜈(𝑑𝑧)𝑑𝑠).            (22) 

 

Next, we will establish the following lemma, which is an extension of the exponential martingale 

inequality to Le vy case and that is a fundamental tool in the formulation of our main result over exponential 

stability. Its demonstration is a straightforward application of Ito’s formula. 

Lemma 2. (Exponential martingale inequality). Let α, β, and T > 0 be any positive numbers and let M(t) 

be a martingale, then 

 

℘ { 𝑠𝑢𝑝0 ≤ 𝑡 ≤ 𝑇  𝑀(𝑡) −
1

𝛼
< 𝑀, 𝑀 > (𝑡) > 𝛽} ≤  𝑒−𝛼 𝛽 .         (23) 

 

Proof. For the proof, see for example [11, 14]. 

We are now in a position to establish the next result about the boundedness of the solutions of our 

controlled model. 

Theorem 1. Assume that the hypotheses (H1), (H2) and (H3) are satisfied. Then, there exists 𝐾 ∈  𝑅, 

such that 

 

𝐸 | 𝑥(𝑡) |2  ≤  𝐾.           (24) 

 

Proof. We know that 
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𝑥(𝑡)  =  𝑥0  + ∫ 𝑓(𝑥, 𝑡, 𝑢)𝑑𝑡
𝑇

0

 + ∫ 𝑔(𝑥, 𝑡, 𝑢)𝑑𝑊𝑡

𝑇

0

 

 

+𝑥(𝑡)𝑢(𝑡) ∫ ∫ 𝜉 (𝑡, 𝑥, 𝑧)𝑁̃(𝑑𝑡, 𝑑𝑧)
𝑅

𝑇

0
 ,         (25) 

 

and we use the inequality: 

 

| ∑ 𝑥𝑖|2𝑛
𝑖=1  ≤ 𝑛 ∑ |𝑥𝑖|2𝑛

𝑖=1  , 𝑛 ∈  𝑁,         (26) 

 

for n = 4, to obtain 

 

|𝑥(𝑡)|2  ≤  4( | 𝑥(0) |2  + |  ∫ 𝑓(𝑥, 𝑡, 𝑢)𝑑𝑡
𝑇

0

 |2  

+ ∫  𝑔(𝑥, 𝑡, 𝑢)𝑑𝑊𝑡  
𝑇

0

 

                                                                       +𝑥(𝑡)𝑢(𝑡) ∫ ∫ 𝜉 (𝑡, 𝑥, 𝑧)𝑁̃(𝑑𝑡, 𝑑𝑧) |2 ).
𝑅

𝑇

0

                                                   (27) 

 

If we consider the expected value: 

 

𝐸 | 𝑥(𝑡) |2  ≤  4(𝐸 | 𝑥(0)|2  +  𝐸 | ∫ 𝑓(𝑥, 𝑡, 𝑢)𝑑𝑡
𝑇

0

 |2  

+𝐸| ∫ 𝑔(𝑥, 𝑡, 𝑢)𝑑𝑊𝑡  |2
𝑇

0

  

                                                              +𝐸|𝑥(𝑡)𝑢(𝑡) ∫ ∫ 𝜉 (𝑡, 𝑥, 𝑧)𝑁̃(𝑑𝑡, 𝑑𝑧)|2).
𝑅

𝑇

0
                                                      (28) 

 

Applying the Ito-Le vy isometry we obtain: 

 

𝐸 | 𝑥(𝑡) |2  ≤  4(𝐸 | 𝑥(0) | 2  +  𝑇 ∫ 𝐸 | 𝑓(𝑥, 𝑡, 𝑢) |2 𝑑𝑡
𝑇

0

 

 

 + ∫ 𝐸 | 𝑔(𝑥, 𝑡, 𝑢)𝑑𝑡 |2 
𝑇

0

  

 

                                                                   +𝐸 | 𝑥(𝑡)𝑢(𝑡) | 2 ∫ 𝐸 | ∫ 𝜈(𝑑𝑧)𝑑𝑡|2).
𝑅

                                                       (29)
𝑇

0

 

 

We use (H1), (H2) and (H3) to get 

 

𝐸 | 𝑥(𝑡) |2  ≤  4(𝐸 | 𝑥(0) |2  +  𝑇𝜅1  ∫ 𝐸 | 𝑥(𝑡) | 2𝑑𝑡
𝑇

0

 

                                      +𝜅1  ∫ 𝐸 | 𝑥(𝑡)|2 
𝑇

0

+ 𝜅1  𝜅3  ∫ 𝐸 | 𝑥(𝑡) |2 𝑑𝑡
𝑇

0

 ) 

                                       ≤  4 (𝐸 | 𝑥(0)|2  + 𝜅1 (𝑇 +  1 + 𝜅3 ) ∫ 𝐸 | 𝑥(𝑡) |2 𝑑𝑡
𝑇

0

.                                     (30) 
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By using Gronwall’s inequality we obtain: 

 

𝐸 | 𝑥(𝑡) | 2  ≤  4 | 𝑥(0)|2  𝑒𝜅1 (𝑇 +1+𝜅3) ,                                                         (31) 

 

and taking 𝐾 =  4𝑒𝜅1 (𝑇 +1+𝜅3 )  | 𝑥(0) | 2 we arrive to 

 

𝐸 | 𝑥(𝑡) | 2  ≤  𝐾.                                                                                  (32) 

 

Now, the next theorem, which is an extension of similar result in [11] to controlled jumps, shows that 

under the assumptions of Theorem 1, taking 𝑥̃(𝑡) as the solution of the static problem corresponding to 

system (1), 𝑥(𝑡) tends exponentially to 𝑥̃(𝑡). 

Theorem 2. Assume that the hypotheses (H1), (H2), and (H3) are satisfied. If there exists a Lyapunov 

function 𝑉 (𝑥, 𝑡)  ∈  𝐶2,1 (ℝ3  ×  ℝ+ ;  ℝ+), a function 𝜆(𝑡 ∶  ℝ+  →  ℝ+ that has a derivative, such that, for all 

t, lim
𝑡→∞

𝜆(𝑡)  =  ∞ , and constants 𝜂2  >  0, 𝜂3  >  0 and 𝜂3  >  0, such that:  

a) 𝐸 | 𝑥(𝑡)  − 𝑥̃ |2  ≤  𝑉 (𝑡, 𝑥), ∀𝑡 ∈  𝑅+  , where 𝑥̃ is the solution of the static problem corresponding to 

system (1). 

b) 𝐿𝑉 (𝑡, 𝑥)  ≤  𝜂2 𝑉 (𝑡, 𝑥), ∀𝑡 ∈  𝑅+ . 

c) | 𝑉𝑥
𝑇(𝑡, 𝑥)𝑔(𝑥, 𝑡, 𝑢) |2  ≤  𝜂3 𝑉2 (𝑡, 𝑥), ∀𝑡 ∈  𝑅+. 

d) 𝐼 2(𝑡) ≤  −𝜆(𝑡)𝜂4 , ∀𝑡 ∈  𝑅+, 

then, there exist 𝑎 constant 𝑟 >  0, such that 

 

lim
𝑡→∞

𝑙𝑜𝑔𝐸 | 𝑥(𝑡) − 𝑥̃ | 2

𝜆(𝑡)
 ≤  −𝑟.                                (33) 

 

Proof. According to Ito’s formula, the Lyapunov function 𝑉(𝑡, 𝑥) must satisfy: 

 

𝑑𝑉(𝑡, 𝑥)  =  𝐿𝑉(𝑡, 𝑥)𝑑𝑡 + 𝑉𝑥 (𝑡, 𝑥)𝑔(𝑡, 𝑥) 𝑑𝑊 

 

+𝑥(𝑡)𝑢(𝑡) ∫ {𝑉(𝑡, 𝑥(𝑡−) +  𝛾 (𝑥, 𝑡) )  −  𝑉(𝑡, 𝑥(𝑡−))
𝑅3

   

 

− 𝛾 (𝑥, 𝑡) 𝑉𝑥(𝑥, 𝑡) }𝜈(𝑑𝑧) }  

 

+𝑥(𝑡)𝑢(𝑡) ∫ (𝑉(𝑡, 𝑥(𝑡−)  +  𝛾(𝑥, 𝑡) )
𝑅3

  

 

−𝑉(𝑡, 𝑥(𝑡−)) )𝑁̃(𝑑𝑡, 𝑑𝑧).                                                                      (34)  

 

On the other hand, we know that: 

 

𝑑𝑙𝑜𝑔𝑉(𝑡, 𝑥)  =  
1

𝑉(𝑡,𝑥)
(𝑑𝑉(𝑡, 𝑥) −

1

2

1

𝑉(𝑡,𝑥)
𝑑𝑉2(𝑡, 𝑥)).                                                       (35) 

 

Therefore, we obtain 
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𝑙𝑜𝑔𝑉(𝑥)  =  𝑙𝑜𝑔𝑉(𝑥0)  + ∫
1

𝑉(𝑥)
𝑉𝑥(𝑥) (𝑓(𝑥, 𝑠, 𝑢)𝑑𝑠 +  𝑔(𝑥, 𝑠, 𝑢)𝑑𝑊𝑠)

𝑡

0

 

 

+ 
1

2
∫ (

1

𝑉(𝑥)
𝑉𝑥𝑥𝑔(𝑥, 𝑠, 𝑢)𝑔𝑇(𝑥, 𝑠, 𝑢)  − 

1

𝑉2(𝑥)
|𝑉𝑥

𝑇𝑔(𝑥, 𝑠, 𝑢)
𝑡

0

|2 )𝑑𝑠  

 

+ 𝑥(𝑡)𝑢(𝑡)( ∫ ∫ 𝑙𝑜𝑔(𝑉 (𝑥 +  𝜉 (𝑡, 𝑥(𝑡−), 𝑧))  −  𝑙𝑜𝑔(𝑉(𝑥))𝑁̃(𝑑𝑡, 𝑑𝑧))
|𝑧|<𝑐

𝑡

0

 

 

+ ∫ ∫ (𝑙𝑜𝑔(𝑉(𝑥 +  𝜉 (𝑠, 𝑥(𝑠−), 𝑧))  −  𝑙𝑜𝑔𝑉(𝑥)
|𝑧|<𝑐

𝑡

0

  

 

−
1

𝑉(𝑥)
 𝑉𝑥(𝑥) 𝜉 (𝑠, 𝑥(𝑠−), 𝑧)𝜈(𝑑𝑥)𝑑𝑠,                                  (36) 

 

and, using the process 𝐼2 (𝑡): 

 

𝑙𝑜𝑔𝑉(𝑥)  =  𝑙𝑜𝑔𝑉(𝑥0)  + ∫
1

𝑉(𝑥)
𝑉𝑥(𝑥)(𝑓(𝑥, 𝑠, 𝑢)𝑑𝑠 +  𝑔(𝑥, 𝑠, 𝑢)𝑑𝑊𝑠 ) 

𝑡

0

 

 

+ 
1

2
∫

1

𝑉(𝑥)
𝑉𝑥𝑥𝑔(𝑥, 𝑠, 𝑢)𝑔𝑇(𝑥, 𝑠, 𝑢) 

𝑡

0

  

 

− 
1

𝑉2(𝑥)
|𝑉𝑥

𝑇  𝑔(𝑥, 𝑠, 𝑢) |2  𝑑𝑠  

 

+𝑥(𝑡)𝑢(𝑡)(∫ ∫ 𝑙𝑜𝑔(𝑉(𝑠, 𝑥 +  𝜉 (𝑡, 𝑥(𝑡−)), 𝑧))
|𝑧|<𝑐

 
𝑡

0

 

 

−log (𝑉(𝑥)𝑁̃(𝑑𝑡, 𝑑𝑧)) 

 

− 
1

𝑉(𝑥)
𝑉𝑥(𝑥) 𝜉 (𝑠, 𝑥(𝑠−), 𝑧)𝜈(𝑑𝑥)𝑑𝑠 + 𝐼2(𝑡) 

 

− ∫ ∫ 1 + 
𝑉(𝑥 + 𝜉(𝑥,𝑠,𝑧))

𝑉(𝑥(𝑠))
 )𝜈(𝑑𝑥)𝑑𝑠)

|𝑧|<𝑐
,

𝑡

0
                          (37) 

 

and taking 𝑀(𝑡) as the martingale 

 

𝑀(𝑡)  =  
1

2
∫

1

𝑉(𝑥(𝑠))

𝑡

0

𝑉𝑥(𝑥(𝑠))𝑔(𝑥, 𝑠, 𝑢)𝑑𝑊𝑠   

 

+ 𝑥(𝑠)𝑢(𝑠) ∫ ∫ log (
𝑉(𝑥(𝑠)+ 𝜉(𝑥,𝑠,𝑧))

𝑉(𝑥(𝑠))|𝑧|<𝑐

𝑡

0
 𝑁̃(𝑑𝑡, 𝑑𝑧)),                       (38) 

 

We can reduce (37), using 𝑀(𝑡) and the 𝐿 operator: 
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𝑙𝑜𝑔𝑉(𝑥(𝑡))  =  𝑙𝑜𝑔𝑉(𝑥0)  + ∫
𝐿𝑉(𝑥(𝑠))

𝑉(𝑥(𝑠))

𝑡

0

𝑑𝑠  

 

−
1

2
 ∫

1

𝑉2(𝑥(𝑠))

𝑡

0

|𝑉𝑥
𝑇 (𝑥(𝑠))𝑔(𝑥, 𝑠, 𝑢) |2 𝑑𝑠  

 

+𝑀(𝑡) + 𝐼2(𝑡).                                                (39) 

 

On the other hand, using lemma 2, taking 𝛼 =  𝜀, 𝛽 =  𝜀𝑛, 𝑓𝑜𝑟 𝜀 ∈  (0, 1) and 𝑛 ∈  𝑁, ∀𝑛 ≥  𝑡0  : 

 

℘ { 𝑠𝑢𝑝𝑡0 ≤ 𝑡 ≤ 𝑛 [𝑀(𝑡) − 
𝜀

2
 ∫

1

𝑉2(𝑥(𝑠))

𝑡

𝑡0

|𝑉𝑥
𝑇𝑔(𝑥, 𝑠, 𝑢) |2 𝑑𝑠  

 

−𝑥(𝑡)𝑢(𝑡)
1

𝜀
(∫ ∫ (exp (log (

𝑉 (𝑥(𝑠) +  𝜉 (𝑥, 𝑠, 𝑧))

𝑉(𝑥(𝑠))
 )

𝜀

))
|𝑧|<𝑐

𝑡

𝑡0

 

 

−1 − 𝜀 log (
𝑉 (𝑥(𝑠)+ 𝜉 (𝑥,𝑠,𝑧))

𝑉(𝑥(𝑠))
 𝜈(𝑑𝑧)𝑑𝑠 ))  >  𝜀 𝑛 ] ≤  𝑒𝑥𝑝(−𝜀2𝑛).               (40) 

 

We can bound 𝑀(𝑡) because of the Borel-Cantelli lemma: there exists an event 𝐸 ∈  Ω and a random 

number such that for all 𝑛 ≥  𝑛0  the following inequality is satisfied: 

 

𝑀(𝑡)  ≤
𝜀

2
 ∫

1

𝑉2(𝑥(𝑠))

𝑡

𝑡0

|𝑉𝑥
𝑇𝑔(𝑥, 𝑠, 𝑢) |2 𝑑𝑠  

 

−𝑥(𝑡)𝑢(𝑡)
1

𝜀
 {∫ ∫ exp (log (

𝑉(𝑥(𝑠) +  𝜉 (𝑥, 𝑠, 𝑧))

𝑉(𝑥(𝑠))
)

𝜀

)
|𝑧|<𝑐

𝑡

𝑡0

   

 

−1 –  𝜀 𝑙𝑜𝑔 (
𝑉(𝑥(𝑠)+ 𝜉(𝑥,𝑠,𝑧))

𝑉(𝑥(𝑠))
  ) 𝜈(𝑑𝑧)𝑑𝑠 +  𝜀 𝑛.                      (41) 

 

Now, using (41) in (39), we obtain 

 

𝑙𝑜𝑔𝑉(𝑥(𝑡))  ≤  𝑙𝑜𝑔𝑉(𝑥0))  + ∫
𝐿𝑉(𝑥(𝑠))

𝑉(𝑥(𝑠))

𝑡

0

 𝑑𝑠 + 𝐼2 (𝑡)  

 

−𝑥(𝑡)𝑢(𝑡)
1

𝜖
{∫ exp (log (

𝑉(𝑥(𝑠) +  𝜉 (𝑥, 𝑠, 𝑧))

𝑉(𝑥(𝑠))
)

𝜀

)
𝑡

𝑡0

   

 

−1 − 𝜀log (
𝑉(𝑥(𝑠) +  𝜉(𝑥, 𝑠, 𝑧))

𝑉(𝑥(𝑠))
 ))𝜈(𝑑𝑧)𝑑𝑠 +  𝜀 𝑛  

 

+ (
1

2
−

𝜀

2
) ∫

1

𝑉2(𝑥(𝑠))

𝑡

0
|𝑉𝑥

𝑇((𝑥(𝑠))𝑔(𝑥, 𝑠, 𝑢) |2 𝑑𝑠.                        (42) 
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In the central term of Eq. (42), taking 𝜀 →  0 and applying, dominated convergence theorem and 

l’H𝑜̂pital rule, we get 

 

lim
𝜖→0

𝑥(𝑡)𝑢(𝑡)(
1

𝜀
∫ ∫ (exp (log ( 

𝑉(𝑥(𝑠) +  𝜉(𝑥, 𝑠, 𝑧))

𝑉(𝑥(𝑠))|𝑧|<𝑐

𝑡

𝑡0

)𝜀) ) 

 

−1 −  𝜀𝑙𝑜𝑔 ( 
𝑉(𝑥(𝑠)+𝜉(𝑥,𝑠,𝑧)) 

𝑉(𝑥(𝑠))
 𝜈(𝑑𝑧)𝑑𝑠) +  𝜀 𝑛 =  0.                      (43) 

 

So, 

 

𝑙𝑜𝑔𝑉 (𝑥(𝑡))  ≤  log (𝑉(𝑥0))  + ∫
𝐿𝑉(𝑥(𝑠))

𝑉(𝑥(𝑠))

𝑡

0

𝑑𝑠 + 𝐼2 (𝑡)  

 

+
1

2
∫

1

𝑉2(𝑥(𝑠))

𝑡

0
|𝑉𝑥

𝑇(𝑥(𝑠))𝑔(𝑥, 𝑠, 𝑢) |2  𝑑𝑠.                           (44) 

 

Using hypothesis b), c) and d): 

 

𝑙𝑜𝑔𝑉(𝑥(𝑡)) ≤  𝑙𝑜𝑔𝑉(𝑥0) + ( 𝜂2 + 
𝜂3

2
 ) 𝑡 −  𝜆(𝑡)𝜂4.                                          (45) 

 

Now, using hypothesis a) 

 

lim
𝑡→∞

𝑙𝑜𝑔𝐸 | 𝑥(𝑡)  − 𝑥̃(𝑡) |2

𝜆(𝑡)
 ≤  lim

𝑡→∞

𝑙𝑜𝑔𝑉(𝑥0)

𝜆(𝑡)
 

 

+lim
𝑡→∞

 
( 𝜂2 +

𝜂3
2

  )𝑡

 𝜆(𝑡)
                                  (46) 

 

and by the properties of λ(t) we have 

 

lim
𝑡→∞

 
𝑙𝑜𝑔𝐸 | 𝑥(𝑡) −𝑥̃(𝑡) |2

𝜆(𝑡)
  ≤  − 𝜂4 ,                              (47) 

 

So, the proof is complete. 

Eq. (47) says that the path of the solution 𝑥(𝑡) will converge to the path of the steady-state solution 𝑥̃(𝑡) 

exponentially fast. 

4. Numerical Results  

Numerical simulations have been carried out for the solution of the example driven by Le vy noise 

presented here. For the sake of simplicity of calculations, we assume that the driving Poisson random 

measures are generated by stationary Poisson point processes. So, we just an approximation of Le vy 

processes. According to the parameters on (9) and (10), the values chosen are β = 0.1, δ = 0.3, γ = 0.2, 𝜀 =

 0.4, ω = 0.5, κ = 0.6, A1 = 0.3, A2 = 0.2, A3 = 0.07. In Fig. 1 we present limit trajectory of the states 𝑥1(𝑡), 

𝑥2(𝑡)and 𝑥3(𝑡), using the Euler-Maruyama scheme. 
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Fig. 1. Stochastic states limit trajectory 𝑥1(𝑡), 𝑥2(𝑡) and 𝑥3(𝑡) with white noise and Le vy jumps. 

 

5. Final Considerations and Conclusions 

In this paper, we have analyzed one kind of Lotka-Volterra systems which represent one of the most 

important models to describe population dynamics in competition. This is a controlled stochastic 

Lotka-Volterra model for one-predator-two-preys. That system contains control functions, white noise and 

Le vy jumps. 

We have studied the boundedness and the exponential stability of the solutions of the system, around the 

static solution. We have shown that the solutions of this controlled stochastic Lotka-Volterra model with 

Le vy jumps are bounded and exponentially stable. In our context, it is important to develop some 

techniques to control random fluctuations and sudden end unpredictable changes in the environment, like 

Lyapunov approach or geometric techniques of Control Theory, as part of an optimal and general strategy 

for the preservation of species and the harvest of any renewable resource as some animals or plants. In 

other contexts, where the species may be viruses or even subatomic particles, this approach is equally 

useful.  

Although we do not present a sensitivity analysis of the parameters associated with Le vy jumps and 

white noise, from our numerical simulations, we find that, if the noise perturbation is small (𝛼1, 𝛼1, 𝛼1< 

0.20) and ξ = 0.013284, for Le vy jumps, then the exponential stability property is preserved in the 

stochastic model, despite the two kinds of disturbance considered. 
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