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Abstract: In this work, we developed a finite volume method code to handle the flow field problem of the 

one-dimensional unsteady Euler equations caused by the moving contact discontinuity interface between 

two different species on both sides of the shock tube. The derived additional energy conservation equation 

introduces a non-conservative term. It is crucial to reduce non-physical numerical oscillations and enhance 

shock-capturing capability and computational accuracy, especially for high-resolution problems. In this study, 

firstly, we extended the energy equation of the unsteady Euler equations to accommodate i species and 

considered different state equations. Based on the test results, it was found that the considered state 

equations did not improve the above issues. Furthermore, we attempted to extend the first-order flux limiter 

to second order and tested its effectiveness. The results showed that the quadratic term had minimal impact 

on the entire computation process in gradient calculations. Hence, attempting to improve the flux limiter 

through this approach was deemed inappropriate. 

Keywords: Euler equations, numerical oscillation, contact discontinuity, shock capturing, Runge-
Kutta method, gradient method, flux limiter 

1. Introduction

In 1984, the flux vector questions of Euler equations for compressible flow with consideration of the

simplest and ideal gas laws, Leer [1] discussed the type of shock wave under the steady state between two 

regions based on first order upwind scheme. In addition, the problems of supersonic un-differential point 

and stagnation point, we treated this kind question with the type of split fluxes has the equivalent advantage 

according to the form developed by Steger and Warming [2]. 

Dealing with the Riemann problem of unsteady hypersonic flow, directly solving the conservation 

equations numerically poses difficulties due to non-linear phenomena. In the 1950s, Godunov [3] suggested 

using previous time point information for accurately solving discretized conservation equations of a single 

ideal gas. In 1979, Leer developed the second-order extenmon of Godunov’s method for hyperbohc 

conservatton laws, known as MUSCL method and the Total Variation Diminishing (TVD) scheme for high-

order accuracy in numerical computing. Detailed wave system approximations are found in Roe [4] and 

Osher  [5] solvers; Roe’s solver uses local linearization [6], while Osher’s replaces shock waves with simple 

compression waves, known as “flux-difference splitting”. In 1994, Wada and Liou [7] proposed the A Flux 

Splitting Scheme (AUSMDV) method, improving upwind split schemes based on the Advection Upstream 

Splitting Method (AUSM) principle. Combining numerical flux with flux limiters improves computation 
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accuracy and prevents violent oscillations, especially at shock waves and contact discontinuities. 

2. Modelling 

In this study, we consider 1D-Euler equations with gas mixture model in general form, 

𝜕

𝜕𝑡
∫ 𝑈𝑑𝑥

𝑉
+ ∫ 𝐹𝑑𝐴

𝜕𝑉
= ∫ 𝑄𝑑𝑥

𝑉
,                               (1) 

where V stands for volume, U is the vector relation of conservation variables, 𝜕𝑉 represents surface, F is 

frictionless flux vector and Q depicts the vector parameter of source terms, see Shieh and Li [8] as well as 

Shieh et al. [9]. Those vector parameters could be defined as 

𝑈 = [𝜌𝑖 , 𝜌𝑢, 𝜌𝑖𝐸𝑖 , 𝜌𝐸], 𝐹 = [𝜌𝑖𝑢, 𝜌𝑢2 + 𝑃, 𝜌𝑖𝐸𝑖𝑢, 𝜌𝐸𝑢 + 𝑃𝑢], 𝑄 = [0, 0, −(𝑢𝑖𝑃𝑖)𝑥 + [𝜌𝑖𝐸𝑖(𝑢 − 𝑢𝑖)]𝑥 , 0]. (2) 

We let “Model B1” be the expression form Eq. (2) and “Model B2” be the form as 

𝑄 = [0, 0, −(𝑢𝑖𝑃𝑖)𝑥 + 𝜌𝑖𝐸𝑖(𝑢 − 𝑢𝑖)𝑥 , 0].                          (3) 

In addition, “Model B3” is displayed by 

𝑄 = [0, 0, −(𝑢𝑖𝑃𝑖)𝑥, 0].                                   (4) 

Based on gas mixture, the third vector describes the additional energy source term which Ton [10] expand 

it. Therefore, the different two densities 𝜌1 and 𝜌2 just get the energy of other species from the total energy 

and produce an extra individual energy 𝜌1𝐸1. In the above vector matrices, mixing specific heat ratio 𝛾 is 

simplified as 

𝛾 = 1 + [
∑ (𝑌𝑖 𝑊𝑖⁄ )𝑛𝑠

𝑖=1

∑ (𝑌𝑖 𝑊𝑖⁄ (𝛾𝑖 − 1))𝑛𝑠
𝑖=1

⁄ ]. 

Moreover, the thermodynamic function among the individual pressure 𝑃𝑖 , energy 𝐸𝑖  and specific heat 

ratio 𝛾𝑖  is shown as 𝑃𝑖 = (𝛾𝑖 − 1) (𝜌𝑖𝐸𝑖 −
1

2
𝜌𝑖𝑢2). 

3. Numerical Method 

 Finite Volume Method 

By the discretization of Eq. (1), we classify the computational domain to the distinct control volume K, 

where the boundary of individual computing cells could be defined by mesh border. We transform the 

difference equation into an algebraic equation by integrating along the computing cells. Eq. (1) using closed 

volume between ∆𝑡  and ∆𝑥 . Now, for the computing cell boundary, we again consider the form of 

conservation equations as 

𝜕

𝜕𝑡
∫ 𝑈(𝑥, 𝑡)𝑑𝑥

𝐾

+ ∮ 𝐹(𝑥, 𝑡)𝑑𝐴
𝜕𝐾

= ∫ 𝑄(𝑥, 𝑡)𝑑𝑥
𝐾

. 

The variable 𝜙𝐾 is defined by 𝜙𝐾(𝑡): = ∫ 𝑄(𝑥, 𝑡)𝑑𝑥
𝐾

− ∮ 𝐹(𝑥, 𝑡)𝑑𝐴
𝜕𝐾

. 

Through the flux calculation in AUSMDV Riemann solver and the discretization of source term 𝑄(𝑥, 𝑡) , the 

individual control volume K is defined by the mean value U of every grid. For 1D space discretization, we can 

get a discretized form of first order time stepping by 

∆𝑈𝐾 = 𝑈𝐾(𝑡2) − 𝑈𝐾(𝑡1), ∆𝑈𝐾(𝑥, 𝑡2) = 𝑈𝐾(𝑥, 𝑡1) +
∆𝑡

∆𝑥
𝜙𝐾(𝑥, 𝑡𝑠).               (5) 

Through the process of temporal iterations, we solve the variables of temporal discretization in every 

volume mesh after the previous temporal and space discretization. 
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 Time Stepping Procedure 

In the presenting study, the explicit method is applied to deal with the time discretization of Eq. (1). For 

the time stepping procedure, we recall the Eq. (5) to obtain the following explicit two-steps second-order 

Runge-Kutta method with  

𝑈𝐾(𝑥, 𝑡2) ≈ 𝑈𝐾(𝑥, 𝑡1) +
∆𝑡

2 ∙ ∆𝑥
𝜙(𝑈𝐾(𝑥, 𝑡1)) 

+
∆𝑡

2∙∆𝑥
𝜙 [𝑈𝐾(𝑥, 𝑡1) +

∆𝑡

∆𝑥
𝜙(𝑈𝐾(𝑥, 𝑡1)) +

∆𝑡2

2!∙∆𝑥
𝜙2(𝑈𝐾(𝑥, 𝑡1))]. 

4. Results 

In this study, we mainly carried out a series of tests for the new additional energy term in the condition of 

dual gas. Then we considered the simplest two gases to carry out tests. The classification of our study is 

expressed as Table 1. 

 
Table 1. The Initial Condition of the Reference Solution 

 ∆𝒙 𝑪𝑪𝑭𝑳 Limiter Integration 

Reference solution 0.0001 0.9 van Leer Second-order Runge-Kutta method 

 

Additionally, we applied two species which are air and helium (He) separately, and the foundational 

parameters of the species are given in Table 2. On the other hand, the boundary conditions are set as: (i) the 

stepping size of the space discretization 𝛥𝑥 = 0.01, (ii) the stability factor 𝐶𝐶𝐹𝐿 = 0.9 and (iii) the maximal 

timesteps equal to 20,000. Here, we adopt the first-order backward (𝐵1) difference method. Taking the initial 

conditions in Table 3, we verified the ability of through the test condition of dual species. In this case, we 

tested the influence of the varied forms of EOS for the additional energy term. 

 
Table 2. The Thermodynamic Parameters of Test Species 

 𝑾 𝑹 𝜸 

Air 28.97 0.287 1.4 

He 4.003 2.0769 1.667 

 
Table 3. The Dual Species Initial Condition of the Shock Tube Problem 

Air 𝝆𝟏 𝝆𝟐 𝒖 𝑷 𝒀𝟏 𝒀𝟐 𝒙 

Species condition of left-hand side (L) 1 0 0 1 1 0 𝑥 < 0.5 

Species condition of right-hand side (R) 0 0.8 0 0.2 0 1 𝑥 ≥ 0.5 

 

⚫ 𝑃𝑛𝑜𝑟𝑚𝑎𝑙:  We: computed: the: additional: source: term: Q: by: the: relation: form: of: pressure: P,: 𝑃𝑖 =

(𝛾𝑖 − 1) (𝜌𝑖𝐸𝑖 −
1

2
𝜌𝑖𝑢2).:  

⚫ 𝑃𝑀.𝐸  We:considered:the:velocity:of: individual:species:and:try:to:substitute:for: the:velocity:u:by:the:

specific:velocity: 𝑢𝑖.:Then:the:relation:form:of:pressure:is:expressed:as: 𝑃𝑖 = (𝛾𝑖 − 1) (𝜌𝑖𝐸𝑖 −
1

2
𝜌𝑖𝑢𝑖

2). 

After that, we carried out the simulation through the dual-gas initial condition of shock wave and adopting 

the first order difference method and Superbee limiter to discuss whether the estimation ability can be 

improved by this way. 

By Fig. 1, the numerical oscillations are somehow improved for Model 𝐵1  and 𝐵2 , and the 

perpendicularity of Model 𝐵3 seems to become better. Further, we observed the others related diagrams, 

Figs. 2−4, the non-physical oscillations of Model B1 becomes little better but its catching capability gets worse 

more. However, for Model 𝐵2  and 𝐵3 , not only the oscillations get grievous but their capturing-shock 

abilities are more and worse. For example, in Fig. 2, the numerical oscillations of 𝐵2 and 𝐵3 occur when the 
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velocity changes around 𝑥 =  0.65  and the numerical results depart from shock wave. For Fig. 4, the 

variation inclinations are similarly to P-related figure. Hence, we knew there are no benefits for considering 

𝑃𝑖 for 𝑃𝑀.𝐸 . Maybe we could try other forms of equation of state. 
 

 

Fig. 1. 𝛾-related figure of the different EOS for new models. 
 

 
Fig. 2. P-related figure of the different EOS for new models. 

 

 

Fig. 3. 𝜌-related figure of the different EOS for new models. 

International Journal of Applied Physics and Mathematics

102 Volume 14, Number 3, 2024



  

 
Fig. 4. 𝜌𝐸-related figure of the different EOS for new models. 

 

In the time stepping dissemination of one-dimensional system follows the principle of Riemann average 

variable. The restriction function is inferred from the restriction factor 𝜑 based on the one-side gradient of 

neighbor grid, and the gradient must be increase with the step of numerical reconstruction. In general, the 

judgement in both sides of grid adds the restriction function by using approximate piecewise linear method 

for the TVD scheme. However, we expanded the first-order restriction expression to the second-order relation 

form. And then, we used the initial condition of dual mix gas for the new derived energy Model 𝐵3 joining 

the 𝐵1 difference method and RK2 scheme to examine the effect that the limit function adds the quadratic 

term. 

According to the related diagrams of 𝜌  and 𝑢 , Figs. 5−8, the numerical consequences which have the 

square term in limit expression have not evident diversity; further, they are almost identical compared with 

that without the square expression. Originally, we expected that the perpendicularity on the region of high 

gradient is improved through the quadratic to adjust its computing ability. However, apparently, the outcomes 

show that the value of quadratic term is quite slight such that it is no use for the entire process of simulation. 

 

 

Fig. 5. 𝜌-related figure of the comparison for second-order estimation of gradient in flux limiter. 
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Fig. 6. u-related figure of the comparison for second-order estimation of gradient in flux limiter. 

 

 

Fig. 7. 𝜌𝐸-related figure of the comparison for second-order estimation of gradient in flux limiter. 
 

 
Fig. 8. 𝑃-related figure of the comparison for second-order estimation of gradient in flux limiter. 

5. Conclusion 

We wanted to know the influence of the varied forms of EOS for the additional energy term, so we 

considered the specific velocity 𝑢𝑖  into the Equation of State (EOS) to test its computing precision. Then we 
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did simulation through the dual-gas condition of shock wave and using the 𝐵1  difference method and 

Superbee limiter to discuss whether the estimation ability can be improved by this manner. As the testing 

results, not only the oscillations of Model 𝐵3  get grievous but its capturing-shock abilities are more and 

more unhealthy. Hence, we knew that it is no uses through considering the case of 𝑃𝑀.𝐸 , or maybe we should 

say that the considered EOS is inappropriate for our test case. As the second test results, we got that the 

influence of the quadratic term of gradient estimation is insignificant, even almost no, for the whole 

computing procedure. Hence, that we wanted to improve the flux limiters through this way is unsuitable. 
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