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Abstract: In mathematics, generating functions are important way to transform formal power series into
functions and to analyze asymptotic properties of sequences. On the other hand, hypergeometric function is
a special function represented by the hypergeometric series. Gauss, Confluent, Appell, Lauricella, and Horn
functions are as an example of hypergeometric functions. In this article, we will introduce k-hypergeometric
functions which are extensions of the Gauss hypergeometric functions including k- Pochhammer symbol.
We first give an identity for k-Pochhammer symbol and certain linear generating functions for
k-hypergeometric functions. Then we derive a family of multilinear and multilateral generating functions
for these functions. In the main theorems, specially, bilateral generating function relations are obtained by
applying extended multivariable hypergeometric functions and Cesaro Polynomials. Additionally we
present bilinear generating functions for k-hypergeometric functions.

Key words: Hypergeometric functions, generating functions, multilinear and multilateral generating
functions, k-hypergeometric functions, k-Pochhammer symbol.

1. Introduction

The hypergeometric functions are important for obtaining various properties, such as, integral
representation, generating functions, solution of Gauss differential equations.
We aim at deriving some generating functions for a family of the k-hypergeometric functions defined by

(see [1]):
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(a,p,7y€C; y#0,-1,-2,.; |z|<1 and k>0)

in terms of the following Pochhammer k-symbol (1), (4,v €C) defined by [2]:
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where the k-gamma function I',(z) was introduced in [2] as follows:

_tk

z) :I:tz’lert Re(z)>0. (3)

Here, and in what follows, we respectively denote by R and C the sets of real and complex numbers
and N,:=NU{0},(N=123,..) and Z:=2Z"U{0}, (2" =-1-2,-3,...).

Clearly, in the special case K =1 equations (1), (2), and (3) are reduces to the usual hypergeometric

function, Pochhammer symbol, and gamma function given by respectively [3]:

F(aﬂ%Z)—Z(())(ﬁ)' 20 (I2)<1),

(1)V=F(i+v):{ﬁ( 1 v=0, 1eC2{ }

1) 2+1)(A+2)..(A+(n-1) ;v=n,neN, 1eC’
z) :J':tz’l e'dt, Re(z)>0.

The main aim of this paper is to derive various classes of multilinear and multilateral generating
functions for k-hypergeometric functions given by (1). We also give special cases of generating functions

presented in this article.

2. Generating Functions
In this section, we derive a property of k-Pochhammer symbol and obtain generating function relations

for k-hypergeometric functions.
Lemma 2.1. We have following identity for k-Pochhammer symbol given by (2):

., <)

Proof. If we use k-Pochhammer symbol definition given by (2), then

(=), . =(=n)(=n+K)(=n+2K)...(-n+k(r -1))
:(—1)rkr(E)[E— )...(’k‘—(r 1))(4) 321
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which completes the proof.
Theorem 2.1. We have the following generating function for the k-hypergeometric functions given by (1):

S ﬂ')nk o o\en -4 —kxt
> . F (—nk, B;7;x)t" = (1-kt) « [A,B, o kt) (4)

n=0

where Ae€C and |t|<1.

Proof. Let T denote the first member of assertion (4). Using (1), we have

= (ﬂ, r<nk( nk)rk(ﬂ)rk r SRR (ﬂ“)nk(_nk)rk(ﬂ)rk rgn
T-3 S =33 Bt W oy
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and using Lemma 2.1, we get,

T= iknk (Z’)n,k (ﬁ)r,k (_1)I’ k'n! X't"

n=0 r=0 (y)r,kn!r!(n_r)!

Replacing N by N+r we may write that
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Using the following properties (see [4], [5])
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we get
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which completes the proof.
Theorem 2.2. We have the following generating function for the k-hypergeometric functions given by (1):

o0 tn .
> F(=nk, B;7; X) =€ D, (7 -ka) (5)
n=0 .

where |t| <1 and ®, is k-confluent hypergeometric function.

Proof. Let T denote the first member of assertion (5). Using (1), we have

T= iknk (_nk)r,k (ﬁ)r,k Xrtn

n=0 r=0 (7)r,k ri n!
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and using Lemma 2.1, we get,

Replacing N by N+r we may write that

T= iﬂ(—kxt)r it—n' =e' @, (B;7;—kxt),

r=0 (7/)r,k r! n=0 N

which completes the proof.

3. Multilinear and Multilateral Generating Functions

In this section, we derive several families of bilinear and bilateral generating functions for the
k-hypergeometric functions by using the similar method considered in [6]-[9].

Theorem 3.1. Corresponding to an identically non-vanishing function Qy(yl,..., Y,) of S complex

variables Y;,..., Y, (S€ N) and of complex order z, let

A, Ve ¥6i &) = ial O T (7 y,)E

a =0, y,yeC

where and
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provided that each member of (6) exists.
Proof. For convenience, let S denote the first member of the assertion (6). Then,
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which completes the proof. By using a similar idea, we also get the next result immediately.

Theorem 3.2. Corresponding to an identically non-vanishing function Qﬂ(yl, . Y;) of S complex

variables Y,,..., ¥, (S€ N) and of complex order z, let

A, Ve ¥6i &) = ia, QT (7 y,)E

where @ #0, 1,y €C and

) '
o L . _5
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Then, for pe N we have

Z®é’j,‘f(x, Yireeon ys:t%}” =e' ©, (B7;—kt)A,,, (V1o Vi 1) (7)
n=0

provided that each member of (7) exists.

4. Special Cases
As an application of the above theorems, when the multivariable function Q, (y,,...,Y,), €N,

se N is expressed in terms of simpler functions of one and more variables, then we can give further

applications of the above theorems. We first set

=0 QO V) =UE0 A LAY By B Ve Vi Yoo ¥e)

{ I}IENUIP‘Q

in Theorem 3.1, where the extended multivariable hypergeometric functions (k)E(({rli} ) generated by
HleNgip.a
(see [10]):
- (4) : :
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We are thus led to the following result which provides a class of bilateral generating functions for
k-hypergeometric functions and the extended multivariable hypergeometric functions.
Corollary 4.1. If

A/u,(/j(y]_""’ ys’g) ': ;al (k)E(r) )(ﬁ’—{_ll’l—}_yjl’ﬂkﬁ—l"'"ﬂr;}/l""'yr; y]_""’ yr)§|

({K' }léNo:p.q

(& #0, w1,y €C)
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then, we have

w [0/p] —(n-phk, B ) A+u+wl, By B Ign-ol
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provided that each member of (9) exists.

Remark 4.1. Using the generating relation (8) for the extended multivariable hypergeometric functions

A
and getting @, = (I—')', 1 =0, =1 inCorollary 4.1, we find that
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On the other hand, we set Q0 ,(y)=F (—(u+wl)k, B;y;y) in Theorem 3.2, we have the bilinear

generating function relations for the k-hypergeometric functions.
Corollary 4.2. If

Ay (1:6) =Y & Ry, Bi 73 y)E

(& #0, u,y €C)

then, we have
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provided that each member of (10) exists.

Remark 4.2. Using the generating relation (5) for the k-hypergeometric functions and getting

q , #=0, ¥ =1 in Corollary 4.2, we find that
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In the same way, we set, QQ ,(Y)=F (—(u#+wl)k, B;7;y) in Theorem 3.1 we have the bilinear

generating function relation for the k-hypergeometric functions. Then again, we set, Q _,(y)= g/(i)wl (y)

in Theorem 3.2, where the Cesaro polynomials generated by [8], [9]:

SOt = (1-t) F (1-xt) ™ (11)
n=0

We are thus led to the following result which provides a class of bilateral generating functions for
k-hypergeometric functions and the Cesaro polynomials.
Corollary 4.3. If

A,, (8= ian g&  (y)&'

(& #0, u,y €C)
then, we have
w [/p] (n—plk, B . | gl
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n=0 1=0

provided that each member of (12) exists.
Remark 4.3. Using the generating relation (11) for the Cesaro polynomials and getting

a8, =1 #=0, ¥ =1 in Corollary 4.3, we find that

= Vel (_(n—pl)k, n-pl s -1
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Furthermore, for every suitable choice of the coefficients & (i € N,) if the multivariable function
Q#W,(yl,...,ys) se N is expressed as an appropriate product of several simpler functions, the

assertions of Theorems 3.1 and 3.2 can be applied in order to derive various families of multilinear and
multilateral generating functions for the k-hypergeometric functions.
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