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Abstract: Enlargement of Lie super algebra B(0, 1) was given firstly. Then nonlinear super integrable 

couplings of the super classical Boussinesq hierarchy based upon this enlarged matrix Lie super algebra 

were constructed secondly. And its super Hamiltonian structures were established by using super trace 

identity thirdly. As its reduction, special integrable couplings of classical Boussinesq hierarchy were 

obtained finally. 
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1. Introduction 

With the development of soliton theory, super integrable systems associated with Lie super algebra have 

aroused growing attentions by many mathematicians and physicists. It was known that super integrable 

systems contained the odd variables, which would provide more prolific fields for mathematical 

researchers and physical ones. Several super integrable systems including super AKNS hierarchy, super KdV 

hierarchyand super classical Boussinseq hierarchy, etc., have been studied [1]-[4]. There are some 

interesting results on the super integrable systems, such as Darboux transformation [5], super Hamiltonian 

structures [6], binary nonlinearization [7] and reciprocal transformation [8] and so on. 

The research of integrable couplings of the well knownintegrable hierarchy has been received 

considerable attentions [9]-[12]. One approach to construct linear integrable couplings of the classical 

soliton equation are presented by using matrix Lie algebra constructing new loop Lie algebra [13]. Recently, 

Ma and Zhu [14], [15] presented a scheme for constructing nonlinear continuous and discrete integrable 

couplings using the block type matrix algebra. However, there is one interesting question for us is how to 

generate nonlinear super integrable couplings for the super integrable hierarchy. 

In this paper, We take the Lie algebra B(0, 1) as an example to illustrate the approach for extending Lie 

super algebras. Based on the enlarged Lie super algebra gl(6, 2), we work out nonlinear super integrable 

Hamiltonian couplings of the super classical Boussinesq hierarchy. Finally, we will reduce the nonlinear 

super super classical Boussinesqintegrable Hamiltonian couplings to some special cases. 

2. Enlargement of Lie Super Algebra 

Consider the Lie super algebra B(0, 1). Its basis is  

International Journal of Applied Physics and Mathematics

177 Volume 5, Number 3, July 2015



  

1 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 1 0 , 0 0 0 , 1 0 0 , 0 0 0 , 0 0 1 .
51 2 3 4

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

E E E E E

         
         

              
                  

       (1) 

 
where 

1 2 3, ,E E E  are even element and 
4 5,E E  are odd elements. Their non-zero (anti) commutation 

relations are 
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3 4 5 4 4 2 4 5 1 5 5 3

[ , ] 2 ,[ , ] 2 ,[ , ] ,[ , ] ,[ , ] ,[ , ] ,

[ , ] ,[ , ] 2 ,[ , ] ,[ , ] 2 .
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E E E E E E E E E E E E
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Let us enlarge the Lie super algebra B(0, 1) to the Lie super algebra gl(6, 2) with a basis 

 

1 2 3 4

5

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
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0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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e
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0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0

e e e

       
       
       
         
       
       
                     

(3) 

 

where 1 2 3 4 5 6, , , , ,e e e e e e
 

are even, and 7 8,e e
 

are odd. 

The generator of Lie super algebra gl(6, 2), (1 8)ie i   satisfy the following (anti) commutation 

relations: 

 

1 2 2 1 3 3 1 5 5 1 6 6 1 7 7 1 8 8 2 3 1

2 4 5 2 6 4 2 8 7 3 4 6 3 5 4 3 7 8 4 5 5

4 6 6 5 6 4 7 7

[ , ] 2 ,[ , ] 2 ,[ , ] 2 ,[ , ] 2 ,[ , ] ,[ , ] ,[ , ] ,

[ , ] 2 ,[ , ] ,[ , ] ,[ , ] 2 ,[ , ] ,[ , ] ,[ , ] 2 ,

[ , ] 2 ,[ , ] ,[ , ] 2

e e e e e e e e e e e e e e e e e e e e e

e e e e e e e e e e e e e e e e e e e e e

e e e e e e e e e

         

        

    5 2 7 8 1 4 8 8 3 6

1 4 2 5 2 7 3 6 3 8 4 7 4 8 5 7 5 8 6 7 6 8

2 ,[ , ] ,[ , ] 2 2 ,

[ , ] [ , ] [ , ] [ , ] [ , ] [ , ] [ , ] [ , ] [ , ] [ , ] [ , ] 0.

e e e e e e e e e

e e e e e e e e e e e e e e e e e e e e e e

    

              

(4) 

 

Define a loop super algebra corresponding to the Lie super algebra gl(6, 2), denote by 

 
1(6,2) [ , ] { | (6,2), 1, ,8; 0, 1, 2, }.m

i igl C e e gl i m         
                

(5) 

 

The corresponding (anti)commutative relations are given as 

 

 

3. Nonlinear Super Integrable couplings of the Super Classical Boussinesq Hierarchy 

If let us start from an enlarged spectral problem associated with gl(6, 2), 

 

1
1 1 2 3 1 4 2 5 7 84

( , ) , (1) (0) (0) (0) (0) (0) (0) (0)x U u U e qe re e u e u e e e               
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(7) 

where 1 2, , ,q r u u
 

are even potentials, but ,   are odd ones. 

In order to obtain super integrable couplings of super integrable hierarchy, we first solve the adjoint 

representation of (7), 
 

[ , ],xV U V                                            (8) 

 

with 
 

1 2 3 4 5 6 7 8(0) (0) (0) (0) (0)  (0) (0) (0)= .0 0 0

0 0 0

0

A B E F

C A G E

V Ae Be Ce Ee Fe Ge e e A E B F

C G A E





 

   

 
 

  
          
 

   
          

(9) 

 

where A, B, C, E, F and G are commuting fields, and ρ, δ are anti-commuting fields. 

Substituting 

 

0 0 0 0 0 0 0 0

, , , , , , , .m m m m m m m m

m m m m m m m m

m m m m m m m m

A A B B C C E E F F G G                  

       

              
     

(10) 

 

Intoprevious equation gives the following recursive formulas 

 

,

1
, 1 2

1
, 1 2

, 2 2

1
, 2 1 2 1 12

1
, 1 1 12

,

,

2 2 2 ,
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,
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m x m m m m m m

m x
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(11) 

 

From previous equations, we can successively deduce 
 

0 0 0 0 0 0 0 0 1 1 1 1 1 2 2 1

1 1 1 1 1 1 1 1 1 1
1 1 2 2 2 2 2 2 2 2 2 12 2 4 4 2 2 2 2 2 2

1 1 1
2 2 1 2 1 24 4 4

1, 0, const., 0, , 1, 0, , ,

, , , , , ,x x x x

A B C F G E A B r C E F u r u G

A r B r qr C q E u u r F u u r ru
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      1 1 1 1
1 2 1 1 2 2 34 4 4 4
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3 34 2 4 8 4 2 16 8 2 16

1 1 1 1 1 1
3 2 2 1 1 1 2 1 2 2 24 4 4 4 4 4

, , , ,

, , ,

x x x

x x xx x x x x x

x x x

u G u u q q q A r

qr q B r q r qr r q r r C q r q
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1

1
32

2 2 2 21 1 1 1 1 1 1 1 1
1 2 2 2 1 2 1 2 1 1 2 2 2 1 1 2 28 4 2 2 2 4 16 2 2

2 21 1 1 1 1 1 1 1 1 1
3 1 1 2 216 4 8 2 4 2 2 8 2 2

, ( 1)

( )

, 2

x x

x x x x x x xx

x x x xx x x x

q F

ru u u q u qu u u u u r u ru u u q u qru qu u ru r

q r qr q r r r G u u q u u r

    



          

    

              

              21 1 1
1 12 2 16

2 2 2 21 1 1 1 1 1 1 1 1
1 1 3 34 2 2 2 16 4 2 2 16

, 4 , .x xx x x x x xx x x x

qu qu q

u u q q r r q r q q r q

 

                

 

                 

 

 

Equations (11) can be written as 
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(12) 

 

where 
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Then, let us consider the spectral problem (7) with the following auxiliary problem 

 
( ) ,

n

n

t V 
                                         

 (14) 

 

with 

 

( )

1 1 1 4

0

0 0 0 (0) (0),

0 0 0

0

j j j j j

j j j j j
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j

j j j j

j j j j

A B E F
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A E B FV C e G e

C G A E







   



 



 
 

  
    
 

   
   



                 

(15) 

 

From the compatible condition 
, , ,

n nx t t x 
 

according to (7) and (14), we get the zero curvature 

equation 

 
( ) ( )[ , ] 0.

n

n n

t xU V U V  
                                 

(16) 

 

which gives a nonlinear Lax super integrable hierarchy 
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u
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(17) 

 

The super integrable hierarchy (17) is a nonlinear super integrablecouplings for the super classical 

Boussinesq hierarchy 
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(18) 

 

4. Super Hamiltonian Structure 

A direct calculation reads 

 

1 2

1
2

Str( , ) 4 2 ,Str( , ) ,Str( , ) 2 ,Str( , ) 2 2 ,Str( , ) ,Str( , ) 2 ,Str( , ) 2 .q r u uU V A E U V A E U V C G U V A E U V C G U V U V                 
     

(19) 

 

Substituting above results into the super trace identity [6] 

 

Str d Str ,
U U

V x V
u u

   
 

   

    
   

   


                             

(20) 

 

yields that 

 
1
2
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2
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Comparing the coefficients of 
1n 

 on both side of (21) 

 

1
2
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2
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2
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n

A E
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A E
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From the initial values in (11), we obtain 0  . Thus we have 

 

1
2

1 1

2

2 2 4 2
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n
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n

A E
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It then follows that the nonlinear super integrable couplings (17) possess the following super 
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Hamiltonian form 
 

( ) .
n

n
t n

H
u K u J

u




 

                                      
(24) 

 

where 

 

1
2

1
2

0 4 0 4 0 0

4 0 0

0 0 2 0 0
.

4 0 2 0

0 0 0

0 0 0

J

 

 

 

 

   
 

   
   

  
     
 
                                    

(25) 

 

is a super Hamiltonian operator and ( 0)nH n  are Hamiltonian functions. 

5. Reductions 

Taking 0,    the hierarchy (24) reduces to a nonlinear integrable couplings of the classical 

Boussinesqhirerarchy. 

When 2n   in (24), we obtain the nonlinear super integrable couplings of the second order 

superclassical Boussinesqequatiaons 

2

2

2

2

1 1
2 2

1 1 1
2 2 2

1 1 1 1 1 1 1 1 1 1
1, 1 1 1 1 1 22 2 2 2 8 2 8 8 2 8

1
2, 2 1 1 2 12

2 4 4 4 ,

2 2 ,

( 1)( 2 ) ,

( 1)( 2 2 2

t xx x x x x xx

t xx x x x x

t xx x x x x xx x x xx x x x x xx

t x x x

q q r qq

r r q r qr r

u u q u qu u u u q r qq q r qq

u q u ru u u u

   

 

    



      

    

               

    

2

2

1 1 1 1 1 1 1 1
2 2 1 22 2 2 2 2 2 2 2

3 1 1
8 2 2

1 1
8 2

2 ) 2 2 ,

,

.

x x x xx x x xx xx x x x x

t xx x x x x x

t xx x x x

u qu r u u qr q r r r q r qr r

q q r r

q q

 

      

    








          
      

     

    

(26) 

Especially, taking 0   in (26), we can obtain the nonlinear integrable couplings of the second 

order classical Boussinesq equation 

2

2

2

2

1 1
2 2

1 1 1
2 2 2

1 1 1 1 1 1 1 1 1 1
1, 1 1 1 1 1 22 2 2 2 8 2 8 8 2 8
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,
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t xx x x x x xx x x xx x x
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q q r qq

r r q r qr

u u q u qu u u u q r qq q r qq

u q u ru u u u u qu r u u qr q r r
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(27) 

If setting 1
1 24

1, ,u q u r      in (26), we obtain the second order super classical Boussinesq equation 
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q q r qq
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(28) 



  

6. Conclusions 

In this paper, we introduced an approach for constructing nonlinear integrable couplings of super 

integrable hierarchy. Zhang [16] once employed two kinds of explicit Lie algebra F and G to obtain the 

nonlinear integrable couplings of the GJ hierarchy and Yang hierarchy, respectively. It is easy to see that Lie 

algebra F given in [16] is isomorphic to the Lie algebra span 1 2 3 4 5 6{ , , , , , }e e e e e e  in gl(6, 2). So we can 

obtain nonlinear integrable couplings of super GJ and Yang hierarchy easily. The method in this paper can 

be applied to other super integrable systems for constructing their super integrable couplings. 
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