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Abstract: This paper makes an investigation on solving a kind of almost tridiagonal linear equations. By 

means of exploring more general a system of the Top-Bottom-Bordered Tridiagonal (TBBT) linear 

equations, the paper obtains an algorithm that costs less than the LU decomposition approach to solve the 

almost tridiagonal linear equations. Detail mathematical reasoning is presented to derive and analyze the 

algorithm. Numerical experiments show the algorithm can be applied to engineering application within 

expectation.  

Keywords: Tridiagonal linear equations; Woodbury matrix identity, matrix Inverse, engineering 
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1. Introduction

When constructing a uniform cubic spline interpolation curves with the natural boundaries, the following

linear Eq. (1) always occur. 
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(1) 

The coefficient matrix of the equations looks like a tridiagonal linear system (TLS) but actually not due to 

the two marked terms. It of course can be regarded to be a special case of the following matrix (2): 
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This matrix as well as the following Eqs. (3)–(5) is called bordered tridiagonal matrices.  
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The bordered tridiagonal matrices have frequently raised interests of researchers. Wang [1], Martin and 

Boyd [2], Karawia [3], El-Mikkawy and Atlan [4, 5], Jia and Li [6] researched (3), Martin and Boyd [2], Atlan 

and El-Mikkawy [5] investigated (4) and El-Mikkawy and Atlan [4] also investigated (5), leaving (2) 

unexplored. To meet the needs of theoretical study and engineering computing, this paper investigates (2). 

We first express the matrix (2) by the sum of a tridiagonal matrix A and the product of two matrices U and V, 

then find the inverse of matrix by the Woodbury’s matrix identity. By such means, we find an algorithm 

faster than the LU factorization. The later sections introduce the details. 

2. Woodbury Matrix Identity 

The Woodbury matrix identity, or Woodbury formula, is one of the most applicable lemmas in finding the 

inverse of regular matrices, especially the sparse matrices. From classical textbooks like [7–9] to recent 

professional research [10], it can be found here and there. Suppose C is a regular n × n matrix and  

 
TC A UV= +                                        (6) 

 
where A is an n × n matrix, U and V are n × m matrices with m < n; the Woodbury matrix identity states 

 
1 1 1 1 1 1 1( ) ( )T T TC A UV A A U I V A U V A− − − − − − −= + = − +                     (7) 
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As a result, the solution of a linear system 

 

           C =x f                                       (8) 

 
where x and f are n × 1 matrices, can be expressed by 

 
1 1 1 1 1 1( ) [ ( ) ]T T TA UV A A U I V A U V A− − − − − −= + = − +x f f f                   (9) 

 

3. Problem and Solutions 

Now back to the solution of (1), which is denoted by (8). For the purpose of solving more general cases, 

we consider the coefficient matrix C to be of the form (2), namely  
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where , ( 1,2,..., 2)i ih v i n= −  are real numbers and 
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Then  
TC A UV= +                                     (14) 
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This means that the problem can be solved by once again using the Woodbury formula. In fact, as it was 

shown in [1],  

1 1 1( ( ) )T TA U I V A U V− − −= − +x y y                           (15) 

provided that y is the solution of A =y f . Since A is a tridiagonal matrix that can be solved by the Thomas 

algorithm, our problem can surely be solved.  

Now let 
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and 
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Since (19) is a 2 × 2 matrix, it is easy to find its inverse 
1 1( )TI V A U− −+  provided that it is regular. Since 

(17) is an n × 2 matrix and TV is a 2 × n matrix, the term 
1 1 1( )T TA U I V A U V− − −+  is an n × n matrix, we 

can summarize the following algorithm to find a solution for the Eq. (8) 

 

Algorithm for Solving Eq. (8) 

Step 1. Calculate 
1A−

 and 
1A−=y f . 

Step 2. Calculate 
1

1Z A U−= by (17), obtaining 1Z  of order n × 2.  

Step 3. Calculate 2 1

TZ I V Z= +  by (19) and 
1

2Z −
, obtaining 

1

2Z −
of order 2 × 2. 

Step 4. Calculate 
1

3 1 2

TZ Z Z V−= , obtaining 3Z of order n × n. 

Step 5. Calculate 3( )I Z= −x y . 
  

 
Remark 1. In the case of 2 2... 0nh h −= = = and 1 2 3... 0nv v v −= = = = , the Eq. (19) turns to be 
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reducing the computations by 4(n−3) times. 

4. Computational Efficiency 

Seen from the steps of the computations proposed in the previous section, the operations of the 

computations are as follows: 

(1) Computations of 
1A−

take 
2( 5 5)O n n+ − , according to [11]. 

(2) Computations of 1Z  take (2 )O n  by (17).  

(3) Computations of 2Z  and 
1

2Z −
take (4 2)O n+  by (19). 

(4) Computations of 3Z  takes 
2(8 )O n . 

(5) Computations of final x  takes 
2( )O n n+  

Consequently, the total cost is 
2(10 12 3)O n n+ − , which is the same cost as that in [6]. 

5. Numerical Examples 

This section presents numerical examples for the algorithm proposed before. It first demonstrates the 

C++ language codes and then the examples. For convenience, matrix (2) is called a 

Top-Bottom-Bordered-Tridiagonal (TBBT) matrix, and thus the linear system from it is a TBBT system. 

Particularly, system (1) is called an almost tridiagonal one.  

 C/C++ Programming 

The introduced algorithm is easy to be programmed with any computer advanced language or scripts 

such as C/C++, FORTRAN, Matlab and Maple. Here we propose C/C++ language because it is easily 

embedded into engineering systems of automations. To do, we designed a class CMatrix to deal with the 

matrix operations, especially the one to calculate the inverse of a tridiagonal matrix. Looking into literature, 

we found two algorithms that were introduced in [12] and [13] to calculate the inverse of a tridiagonal 

matrix. We compared the two algorithms and found that the one in [13] is easy to be converted into C++ 

language. We designed two member functions invTriDiagMatrix and AlmostTridiagonalSolver that 

particularly implement our algorithm and incorporated the solver into our project to develop CNC 

interpolator. Application shows the results are within expectation. Readers can see the codes in the 

appendix section.  

 Examples  

As an example, we solve the almost tridiagonal system (1), which is frequently met with when 

constructing an interpolating B-spline curves of the natural boundary . In the equations, iQ are points to be 

interpolated and ( 0,1,..., 1)j j n= +P are control points of the B-spline curve. Taking 
1(414.417,130.627)Q , 

2 (394.420,151.128)Q , 
3 (394.420,181.091)Q , 

4 (417.048,203.169)Q , 
5 (447.571,214.734)Q , 

6 (478.093,203.169)Q ,
7 (500.721,181.091)Q ,

8 (500.721,151.128)Q  and 
9 (480.724,130.627)Q  yields two linear equations  
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These two equations are the form of Eq. (1). With the solver we developed, the solutions for the two are 

obtained by  

(438.293,414.417,390.541,389.940,416.217,447.478,478.973,505.187,504.604,480.724,456.844)TX =  

and 

(113.134,130.627,148.120,183.660,203.787,220.208,203.787,183.660,148.120,130.627,113.134)TY =  

which lead to 0 (438.293,113.134)=P , 1 (414.417,130.627)=P , 2 (390.541,148.120)=P , 3 (389.940,183.660)=P ,

4 (416.217,203.787)=P , 5 (447.478,220.208)=P , 6 (478.973,203.787)=P , 7 (505.187,183.660)=P

8 (504.604,148.120)=P , 9 (480.724,130.627)=P  and 10 (456.844,113.134)=P .  

The interpolated points ( 1,2,...,9)i i =Q , the calculated control points ( 0,1,...,10)j j =P  and the 

constructed B-spline curve are drawn with Fig. 1.  

 

 
Fig. 1. Interpolated points, interpolating B-spline curve and calculated control points. 
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6. Conclusion and Future Work 

As a frequently used linear system, the almost tridiagonal one was less investigated. This paper takes it to 

be a special case of the TBBT system and finds a way to solve the equations with computational efficiency. 

Compared to the Thomas algorithm or the generic Thomas algorithm, the introduced algorithm is less 

efficient although it is better than the LU algorithm. This leaves the future work of finding more efficient 

algorithm. Maybe new algorithm like the Thomas algorithm or those in [4, 5] can be found. Hope to see 

them in the future.  

Appendix: C Language Codes  

The following C language codes are implementation of the algorithm introduced in this paper. They are 

now a part of the class CMatirx we designed. Readers of interests can ask Prof. Xingbo WANG for the 

completed package. It should be pointed out that the function invTriDiagMatrix are converted from the 

Maple codes presented in [13].  

 
////// Member function invTriDiagMatrix. 
////// This is to find the inverse of a tridiagonal matrix. 
////// Argument N: order the tridiagonal matrix.  
////// Arguments a, d, and b: arrays to record the elements of the tridiagonal matrix as seen in [13]. 
///// Argument res: inverse of the calculated tridiagonal matrix.  
void CMatrix::invTriDiagMatrix(int N, double *a, double *d, double *b, CMatrix &res) 
{ int i, j; 
  double *alpha=new double [N]; 
  double *beta=new double [N]; 
  CMatrix A(N); 
  alpha[0]=d[0]; 
  beta[N-1]=d[N-1]; 
   for(i=1;i<N;i++) 
     alpha[i]=(d[i]-b[i]*a[i-1]/alpha[i-1]); 
   for(i=N-2;i>=0;i--) 
  beta[i]=(d[i]-b[i+1]*a[i]/beta[i+1]); 
   for(i=0;i<N;i++) 
    A.SetElement(i,i,1/(alpha[i]-d[i]+beta[i])); 
   
   ////For upper tridiagonal matrix (UTM) 
    for (i=0;i<N-1;i++){ 
  for(j=i+1;j<N;j++){ 
          if(j>i) A.SetElement(j,i,-b[j]/beta[j]*A.GetElement(j-1,i)); 
   } 
   } //// end of treating UTM 
   ////For lower tridiagonal matrix (LTM) 
 for(i=1;i<N;i++){ 
  for(j=i-1;j>=0;j--){ 
   if(j<i)A.SetElement(j,i,-(a[j]/alpha[j]*A.GetElement(j+1,i))); 
  } 
  } //// end of treating LTM 
 res=A; 
   } 
 
////// Member function AlmostTridiagonalSolver. 
////// This is to solve the equation (8).  
////// Argument N: order the tridiagonal matrix.  
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////// Argument f: n1 matrix on the right side of (8).  
////// Arguments a, d, and b: the same meaning as thoes in invTriDiagMatrix. 
////// Argument h: array of h1,h2,...,hn-2 in matrix (10).  
////// Argument v: array of v1,v2,...,vn-2 in matrix (10). 

////// Argument X: n1 matrix ,calculated unknowns of (8).  
 
void CMatrix::AlmostTridiagonal(int N , CMatrix f, double *a, double *d, double *b,double *h,double *v,CMatrix 
&X) 
{ 
 CMatrix invA(N+2,N+2);   //// to store the inverse of A  
 CMatrix Y(N+2,3);        //// to store y 
 CMatrix U(N+2,2);        //// to store U 
 CMatrix Z1(N+2,2);       //// to Z1 
 CMatrix VT(2,N+2);      //// transpose of V  

 CMatrix I(2,2);           ////I,  22 unit matrix 

 CMatrix Z2(2,2);         ////Z2, 22 matrix 
 CMatrix invZ2(2,2);        ////Z2, inverse of Z2  
 CMatrix Z3(N+2,N+2);     ////Z3 

 CMatrix II(N+2,N+2);      ////II, (N+2)  (N+2) unit matrix 
// CMatrix MMM(N+2,3);   /////MMM, N+2 outputs 
 
//// Step 1 of my algorithm 
 CMatrix::invTriDiagMatrix(N+2, a, d, b,res); //// call invTriDiagMatrix 
 Y=invA*f;                  //// calculate Y 
 
////////////// temporary storages  
double *m=new double [N+2]; 
double *xx=new double[N+2]; 
double *th=new double[N+2]; 
////////////// 
 
m[0]=1; 
for(int i=1;i<N+2;i++) m[i]=0; 
for(int i=0;i<N+1;i++) xx[i]=0; 
xx[N+1]=1; 
 
int kk=0; 
for(int j=0;j<N+2;j++) U.SetElement(j,kk,m[j]);  ////Set U 
 
int cc=1; 
for(int j=0;j<N+2;j++) U.SetElement(j,cc,xx[j]);  
 
Z1=invA*U;    //// calculate Z1            
 
int hj=0; 
for(int j=0;j<N+2;j++) VT.SetElement(hj,j,h[j]); 
int hm=1; 
for(int j=0;j<N+2;j++) VT.SetElement(hm,j,v[j]); 
double re[2], ke[2]; 
re[0]=1; re[1]=0; ke[0]=0; ke[1]=1; 
 
int dd=0; 
for(int j=0;j<2;j++) I.SetElement(dd,j,re[j]); 
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int fff=1; 
for(int j=0;j<2;j++)I.SetElement(fff,j,ke[j]); 
 
Z2=I+VT*Z1;        ////calculate Z2 
 
////For invZ2 
CMatrix B(2,2); 
B.SetElement(0,0,Z2.GetElement(1,1)); 
B.SetElement(1,0,-Z2.GetElement(1,0)); 
B.SetElement(0,1,-Z2.GetElement(0,1)); 
B.SetElement(1,1,Z2.GetElement(0,0)); 
 
for(int i=0;i<2;i++) 
for(int j=0;j<2;j++){   
invZ2.SetElement(i,j,B.GetElement(i,j)/(Z2.GetElement(0,0)*Z2.GetElement(1,1)-Z2.GetElement(1,0)*Z2.GetElem
ent(0,1))+0);} 
 
//// for Z3 
Z3=Z1*invZ2*VT; 
 
for(int i=0;i<N+2;i++) th[i]=1; 
for(int i=0;i<N+2;i++)II.SetElement(i,i,th[i]); 
//// for X 
X=(II-Z3)*Y; 
} 
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