
  

Justification of Macroscopic Boundary Conditions for 
One-Dimensional Nonlinear Non-stationary Moment 

System of Equations of Boltzmann 

 

Auzhan Sakabekov, Yerkanat Auzhani* 

Satbayev University, Almaty, Kazakhstan. 
 
* Corresponding author. Tel.: +77012113956; email: erkawww@gmail.com 
Manuscript submitted July 2, 2019; accepted October 25, 2019. 

 
 

Abstract: In this work we prove existence and uniqueness of the solutions of initial and boundary value 

problem for one-dimensional Boltzmann’s moment system of equations with boundary conditions of 

Maxwell-Auzhan in space of functions continuous in time and summable in square by spatial variable. 

 
Key words: Boltzmann equation, Boltzmann's moment system of equations, Maxwell-Auzhan boundary 
conditions. 

 
 

1. Introduction 

Aerodynamic characteristics of aircraft at very high speeds and high altitudes can be determined by 

methods of theory of rarefied gas [1]. For analyzing the aerodynamic characteristics of aircraft in 

transitional regime the full Boltzmann integro-differential equation is used under appropriate boundary 

conditions. Determination of boundary conditions on surfaces streamlined by rarefied gas is one of the 

most important questions of the kinetic theory of gases. In high-altitude aerodynamics an important role is 

played by interaction of gas with surface of a streamlined body [2]. The aero-thermodynamic characteristics 

of bodies in gas flow are determined by transfer of momentum and energy to the surface of the body, that is, 

the relationship between the velocities and energies of molecules incident on the surface and reflected from 

it, which is essence of kinetic boundary conditions on the surface. Maxwell's boundary condition in solving 

specific problems more accurately describes the interaction of gas molecules with surface, one of the 

approximate methods for solving the initial-boundary value problem for Boltzmann equation is moment 

method. In case of gas flowing near a solid or inside a region bounded by solid surface the boundary 

conditions describe the interaction of gas molecules with solid walls. The interaction of gas with solid 

surface is the source of the drag and lifting force of body in gas flow, as well as the heat transfer between gas 

and the solid boundary. The boundary conditions which particles distribution function must satisfy on the 

border of the region (where these particles are moving) are depend on the state of boundary surface, on its 

temperature and on the degree of its roughness and purity. The most common boundary condition for 

particle distribution function is Maxwell's model which first was presented by Maxwell in 1879. It assumes 

that fraction of particles that hits the wall areaccomodated by wall and diffusively reflected by Maxwell’s 

distribution. The remaining fraction of particles arespecularly reflected. From Maxwell’s accomodation 

model we obtain boundary condition for the moments of particles distribution function. For calculating the 

aerodynamic characteristics of aircraft the Boltzmann’s moment equations are used. Boltzmann’s moment 

International Journal of Applied Physics and Mathematics

8 Volume 10, Number 1, January 2020

doi: 10.17706/ijapm.2020.10.1.8-15



  

equations are intermediate between Boltzmann (kinetic theory) and hydrodynamic levels of description of 

state of rarefied gas and form class of nonlinear partial differential equations. Existence of such class of 

equations was noticed by Grad in 1949 [3], [4]. He obtained the moment system by expanding the particles 

distribution function in Hermitte polynomials near the local Maxwell distribution. Grad used cartesian 

coordinates of velocities. Formulation of boundary conditions for Grad’s system is almost impossible 

because the characteristic equations for various approximations of Grad’s hyperbolic system contain 

unknown parameters like density, temperature and average speed.  

Boltzmann equation is an equivalent to infinite system of differential equations relative to the moments 

of particles distribution function in complete system of eigenfunctions of linearized operator. We limit study 

by finite system of moment equations as solving infinite system of equations is not possible.  

Finite system of moment equations for a specific task with a certain degree of accuracy replaces the 

Boltzmann equation. It’s necessary to replace the boundary conditions for particle distribution function by 

a number of macroscopic conditions for the moments, i.e. there arises problem of boundary conditions for a 

finite system of equations that approximate the microscopic boundary conditions for the Boltzmann 

equation. In work [5] we obtained moment system which differs from Grad’s system of equations - we used 

spherical velocity coordinates and decomposed the distribution function into the series of eigenfunctions of 

linearized collision operator [1], [6], which is the product of Sonin polynomials and spherical functions. The 

resulting system of equations which correspond to the partial sum of series and which called the 

Boltzmann’s system of moment equations is a nonlinear hyperbolic system in relation to the moments of 

the particles distribution function.  

In this work we prove existence and uniqueness of the solutions of initial and boundary value problem 

for one-dimensional Boltzmann’s moment system of equations with boundary conditions of 

Maxwell-Auzhan [7] in space of functions continuous in time and summable in square by spatial variable.  

2. Statement of the Problem 

Find solution of initial-boundary value problem for a homogeneous one-dimensional Boltzmann equation 

 
𝜕𝑓

𝜕𝑡
+ |𝑣| 𝑐𝑜𝑠 𝜃

𝜕𝑓

𝜕𝑥
= 𝐽(𝑓, 𝑓), 𝑡 ∈ (0, 𝑇-, 𝑥 ∈ (−𝑎, 𝑎), 𝑣 ∈ 𝑅3

𝑣,     (1) 

 

𝑓|𝑡=0 = 𝑓
0(𝑥, 𝑣), (𝑥, 𝑣) ∈ ,−𝑎, 𝑎- × 𝑅3

𝑣      (2) 

 

𝑓+(𝑡, 𝑥, 𝑣1, 𝑣2, 𝑣3) = 𝛽𝑓
−(𝑡, 𝑥, 𝑣1, 𝑣2, −𝑣3) + (1 − 𝛽)𝑒𝑥𝑝 .−

|𝑣|2

2𝑅𝑇0
/,     

 

𝑣3 = |𝑣| 𝑐𝑜𝑠 𝜃 , (𝑛, 𝑣) = (𝑛, |𝑣| 𝑐𝑜𝑠 𝜃) > 0 , 𝑥 = −𝑎 𝑜𝑟 𝑥 = 𝑎,    (3) 

 

 

where 𝑓 ≡ 𝑓(𝑡, 𝑥, 𝑣) is particles distribution function in space of velocity and time; 𝑓0(𝑥, 𝑣) is distribution 

of particles at the initial time (fixed function); 𝐽(𝑓, 𝑓) ≡ ∫,𝑓(𝑣′)𝑓(𝑤′) − 𝑓(𝑣)𝑓(𝑤)- 𝜎(𝑐𝑜𝑠 𝑥)𝑑𝑤𝑑𝑣  is 

nonlinear collision operator, recorded for Maxwell molecules, n is the unit external normal vector of 

boundary.  

Condition (3) is natural boundary condition for Boltzmann equation, which makes it possible to 

determine the reflected half of the distribution function f, if we know the half corresponding to the falling 

particles. According to (3) some part of falling particles reflected specularly and other particles are 

absorbed into the wall and emitted with the Maxwell distribution with corresponding wall temperature T0. 
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Formula (3) refers to case of wall at rest; otherwise 𝑣 must be replaced by, 𝑣 − 𝑢0, 𝑢0being the velocity of 

the wall. 𝛽 , 𝑇0 , 𝑢0may vary from point to point and with time [6]. In work [7] we approximated 

microscopic Maxwell boundary condition (3) and formulated initial and boundary value problem for 

Boltzmann’s moment system of equations in arbitrary approximation (odd and even) with Maxwell-Auzhan 

boundary conditions. 

3. Main Results 

We study correctness of the initial and boundary value problem for one-dimensional Boltzmann’s 

moment system of equations (we consider pure specular reflection from boundary (𝛽 = 1))  

 

𝜕𝑢

𝜕𝑡
+ 𝐴

𝜕𝑤

𝜕𝑥
= 𝐽1(𝑢, 𝑤) 

 
𝜕𝑤

𝜕𝑡
+ 𝐴′

𝜕𝑢

𝜕𝑥
= 𝐽2(𝑢, 𝑤), 𝑡 ∈ (0, 𝑇-, 𝑥 ∈ (−𝑎, 𝑎),       (4) 

 

𝑢|𝑡=0 = 𝑢0(𝑥), 𝑤|𝑡=0 = 𝑤0(𝑥), 𝑥 ∈ ,−𝑎, 𝑎-,        (5) 

 

(𝐴𝑤− + 𝐵𝑢−)|𝑥=−𝑎 = (𝐴𝑤
+ − 𝐵𝑢+)|𝑥=−𝑎 𝑡 ∈ ,0, 𝑇-,     (6) 

 

(𝐴𝑤− − 𝐵𝑢−)|𝑥=𝑎 = (𝐴𝑤
+ + 𝐵𝑢+)|𝑥=𝑎  𝑡 ∈ ,0, 𝑇-,      (7) 

 

 

 

𝐴 =
1

𝛼

(

 
 

1 0 0
2

√3

3

√5
−
2√2

√15

−√
2

3
0 √

5

3 )

 
 
 , 𝐵 =

1

𝛼√𝜋

(

 
 
 
√2 √

2

3
−

1

√3

√
2

3
2√2 −1

−
1

√3
−1 3√2)

 
 
 

       

 

𝐽1(𝑢, 𝑤) = ( 0, 𝐽02, 0)′, 𝐽2(𝑢, 𝑤) = ( 0, 𝐽03, 𝐽11)′,         

 

𝑢 = (𝑓00, 𝑓02, 𝑓10)′, 𝑤 = (𝑓01, 𝑓03, 𝑓11)′,      

 

 

 

𝐽02 = (𝜎2 − 𝜎0)(𝑓00𝑓02 − 𝑓01
2 √3⁄ )/2 ,          

 

𝐽03 =
1

4
(𝜎3 + 3𝜎1 − 4𝜎0)𝑓00𝑓03 +

1

4√5
(2𝜎1 + 𝜎0 − 3𝜎3)𝑓01𝑓02 ,     

 

𝐽11 = (𝜎1 − 𝜎0)(𝑓00𝑓11 +
1

2
√
5

3
𝑓10𝑓01 −

√2

√15
𝑓01𝑓02)        

 

– are the moments of collision integral, where σ0, σ1, σ2,σ3 are constants. 

It is possible using direct calculations to check that 

International Journal of Applied Physics and Mathematics

10 Volume 10, Number 1, January 2020

where

A′ is transpose matrix, B is positive defined matrix; 



  

𝑑𝑒𝑡 𝐴1 = 𝑑𝑒𝑡 .
0 𝐴
𝐴′ 0

/ ≠ 0,  

 
and matrix 𝐴1  has three positive and same number of negative nonzero eigenvalues. More exactly 

−√3 + √6,−1,−√3 − √6,√3 − √6, 1, √3 + √6 are the eigenvalues of matrix 1A . From (4)-(7) follows that 

number of boundary conditions on left and right sides of interval (-a, a) is equal to the number of positive 

and negative eigenvalues of matrix 𝐴1.  

Thus a system (4) is symmetric hyperbolic nonlinear partial differential equations system. Let’s show 

that 𝐽02  is sign-non-defined square form. It is easy to check that 𝑓00𝑓02 − 𝑓01
2 √3 = (𝐶𝑈, 𝑈)⁄ , where 

𝑈 = (𝑢,𝑤)′, 

𝑢0(𝑥) = (𝑓00
0 (𝑥), 𝑓02

0 (𝑥), 𝑓10
0 (𝑥))′, 𝑤0(𝑥) = (𝑓01

0 (𝑥), 𝑓03
0 (𝑥), 𝑓11

0 (𝑥))′ are the given initial vector-functions; 

𝑤+, 𝑢+ are the vector moments of falling to boundary particle distribution function; 𝑤−, 𝑢−- are the vector 

moments of reflecting from boundary particle distribution function.  

 

𝐶 =  

(

 
 
 

0 1/2
1/2 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0

0 −1/√3
0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0)

 
 
 
. 

 

Eigenvalues of matrix C are -1/2, −1/√3, 0, 0, 0, 1/2. Therefore J 02  is sign-non-defined square form. 

Similarly we can show that 𝐽03, 𝐽11 are also sign-non-defined square forms.  

For the problem (4)-(7) following theorem takes place. 

Theorem. If U0 = (u0(x),w0(x)) ∈ L
2,−a, a- , then problem (4)-(7) has unique solution in domain 

,−a, a- × ,0, T-, belonging to the space C(,0, T-; L2,−a, a-), moreover 

 

‖𝑈‖𝐶(,0,𝑇-;𝐿2,−𝑎,𝑎-) ≤ 𝐶1‖𝑈0‖𝐿2,−𝑎,𝑎-        (8) 

 

wherе 𝐶1 is constant independent from U and T~Ο.‖U0‖L2,−a,a-
−1

/. 

Proof. Let 𝑈0 ∈ 𝐿
2,−𝑎, 𝑎-. Let’s prove estimation (8). We multiple first equation of system (4) by u and 

second equation by w, and integrate from –a to a:  

 
1

2

𝑑

𝑑𝑡
∫ ,(𝑢, 𝑢) + (𝑤,𝑤)-𝑑𝑥
𝑎

−𝑎
+ ∫ ,.𝐴

𝜕𝑤

𝜕𝑥
, 𝑢/ + .𝐴′

𝜕𝑢

𝜕𝑥
, 𝑤/-𝑑𝑥

𝑎

−𝑎
= ∫ ,(𝐽1, 𝑢) + (𝐽2, 𝑤)-𝑑𝑥

𝑎

−𝑎
.    

 

After integration by parts we receive 

 
1

2

𝑑

𝑑𝑡
∫ ,(𝑢, 𝑢) + (𝑤,𝑤)-𝑑𝑥
𝑎

−𝑎
+ (𝑢−, 𝐴𝑤−)|𝑥=𝑎 − (𝑢

−, 𝐴𝑤−)|𝑥=−𝑎 = ∫ ,(𝐽1, 𝑢) + (𝐽2, 𝑤)-𝑑𝑥
𝑎

−𝑎
.   (9) 

 

Taking into account boundary conditions (6)-(7) we rewrite equality (9) in following form 

 
1

2

𝑑

𝑑𝑡
∫ ,(𝑢, 𝑢) + (𝑤,𝑤)-𝑑𝑥
𝑎

−𝑎
+ (𝐵𝑢−, 𝑢−)|𝑥=𝑎 + (𝐵𝑢

−, 𝑢−)|𝑥=−𝑎 − ((𝐴𝑤
+ − 𝐵𝑢+), 𝑢−)|

𝑥=−𝑎
+   

+((𝐴𝑤+ + 𝐵𝑢+), 𝑢−)|𝑥=𝑎 = ∫ ,(𝐽1(𝑢, 𝑤), 𝑢) + (𝐽2(𝑢, 𝑤), 𝑤)-𝑑𝑥
𝑎

−𝑎
      (10) 

 

Let’s use spherical representation [8] of vector 
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𝑈(𝑡, 𝑥) = 𝑟(𝑡)𝜔(𝑡, 𝑥), where 𝜔(𝑡, 𝑥) = (𝜔1(𝑡, 𝑥), 𝜔2(𝑡, 𝑥))′, 𝑟(𝑡) = ‖𝑈(𝑡, . )‖𝐿2,−𝑎,𝑎-, ‖𝜔‖𝐿2,−𝑎,𝑎- = 1.  

Substituting the values u = r(t)ω1(t, x),w = r(t)ω2(t, x)into (10) we have that 

 

 
𝑑𝑟

𝑑𝑡
+ 𝑟𝑃(𝑡) = 𝑟2𝑄(𝑡)           (11) 

 

where 

 

𝑃(𝑡) = (𝐵𝜔1
−, 𝜔1

−)|𝑥=𝑎 + (𝐵𝜔1
−, 𝜔1

−)|𝑥=−𝑎 +          

+,(𝐴𝜔2
+, 𝜔1

−)𝑥=𝑎 + (𝐵𝜔1
+, 𝜔1

−)|𝑥=𝑎 + (𝐵𝜔1
+, 𝜔1

−)|𝑥=−𝑎 − (𝐴𝜔2
+, 𝜔1

−)|𝑥=−𝑎-,   

𝑄(𝑡) = ∫ ,(𝐽1(𝜔1, 𝜔2), 𝜔1) + (𝐽2(𝜔1, 𝜔2), 𝜔2)-𝑑𝑥
𝑎

−𝑎
.         

 

Let’s study equation (11) with initial condition  

 

𝑟(0) = ‖𝑈0‖ = ‖𝑈0‖𝐿2,−𝑎,𝑎-.         (12) 

 

Solution of the problem (11)-(12) has following form 

 

𝑟(𝑡) = 2𝑒𝑥𝑝 .∫ 𝑃(
𝑡

0
𝜏)𝑑𝜏/ 0

1

‖𝑈0‖
− ∫ 𝑄(

𝑡

0
𝜏)𝑒𝑥𝑝(−∫ 𝑃(𝜉)𝑑𝜉

𝜏

0
)𝑑𝜏13

−1
. 

 

If 𝑅(𝑡) ≡ ∫ 𝑄(
𝑡

0
𝜏)𝑒𝑥𝑝(−∫ 𝑃(𝜉)𝑑𝜉

𝜏

0
)𝑑𝜏 ≤ 0 ∀𝑡, then 𝑟(𝑡) is bounded for ∀𝑡 ∈ ,0, +∞). Let 𝑅(𝑡) > 0. We 

denote by T1 the moment of time at which 

 
1

‖𝑈0‖
− ∫ 𝑄(

𝑇1
0

𝜏)𝑒𝑥𝑝(−∫ 𝑃(𝜉)𝑑𝜉
𝜏

0
)𝑑𝜏 = 0.          

        

Then 𝑟(𝑡)  is bounded for ∀𝑡 ∈ ,0, 𝑇- , where 𝑇 < 𝑇1 , moreover 𝑇1~𝛰(‖𝑈0‖
−1
) , since integrand 

𝑄(𝜏)𝑒𝑥𝑝 .−∫ 𝑃(𝜉)𝑑𝜉
𝑡

0
/ is bounded. Hence ∀t ∈ ,0, T- takes place a priori estimation (8). 

Now we prove the existence of a solution for (4)-(7) with help of Galerkin method. Let us *𝜔𝑙(𝑥)+𝑙=1
∞  be a 

basis in space𝐿2,−𝑎, 𝑎-, where dimension of vector 𝜔𝑙(𝑥) is equal to dimension of vector U. For each m we 

define an approximate solution Um of (4)-(7) as follows:  

 

𝑈𝑚 = ∑ 𝑐𝑗𝑚(𝑡)𝑣𝑗(𝑥)
𝑚
𝑗=1 ,         (13) 

 

∫ .(
𝜕𝑈𝑚

𝜕𝑡
+ 𝐴1

𝜕𝑈𝑚

𝜕𝑥
), 𝑣𝑖(𝑥)/ 𝑑𝑥

𝑎

−𝑎
= ∫ (𝐽(𝑈𝑚), 𝑣𝑖(𝑥))𝑑𝑥

𝑎

−𝑎
,𝑖 = 1,𝑚, 𝑡 ∈ (0, 𝑇-,   (14) 

 

𝑈𝑚|𝑡=0 = 𝑈0𝑚(𝑥), 𝑥 ∈ 𝑅,                              (15) 

 

(𝐴𝑤𝑚
− ∓ 𝐵𝑢𝑚

− )|𝑥=∓𝑎 = (𝐴𝑤𝑚
+ ± 𝐵𝑢𝑚

+ )|𝑥=±𝑎       (16) 

 

where 𝑈0𝑚 is the orthogonal projection in 𝐿2 of function 𝑈0 on the subspace, spanned by 𝑣1, … 𝑣𝑚.  

 

𝐽(𝑢𝑚) = (𝐽1(𝑢𝑚, 𝑤𝑚), 𝐽2(𝑢𝑚, 𝑤𝑚))′. 
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We represent 𝑣𝑗(𝑥) in the form 𝑣𝑗(𝑥) = .𝑣𝑗
(1)
, 𝑣𝑗
(2)
/ ′, where  

 

𝑣𝑗
(1)
= (𝑣𝑗1, 𝑣𝑗2, 𝑣𝑗3)

′
, 𝑣𝑗
(2)
= (𝑣𝑗4, 𝑣𝑗5, 𝑣𝑗6)

′
. 

 

The coefficient s𝑐𝑗𝑚(𝑡) are determined from the equations  

 

∑{
𝑑𝑐𝑗𝑚
𝑑𝑡

∫(𝑣𝑗 , 𝑣𝑖)𝑑𝑥

𝑎

−𝑎

+ 𝑐𝑗𝑚 0.𝐵𝑣𝑗
−(1), 𝑣𝑖

−(1)/|
𝑥=𝑎

+ .𝐵𝑣𝑗
−(1), 𝑣𝑖

−(1)/|
𝑥=−𝑎

+

𝑚

𝑗=1

 

+.𝐵𝑣𝑖
−(1), 𝑣𝑗

−(1)/|
𝑥=𝑎

+ .𝐵𝑣𝑖
−(1), 𝑣𝑗

−(1)/|
𝑥=−𝑎

+ .(𝐴𝑣𝑖
+ (2) + 𝐵𝑣𝑖

+ (1)), 𝑣𝑗
−(1)/|

𝑥=𝑎
− 

−.(𝐴𝑣𝑖
+ (2) − 𝐵𝑣𝑖

+ (1)), 𝑣𝑗
−(1)/|

𝑥=−𝑎
+ .(𝐴𝑣𝑗

+ (2) + 𝐵𝑣𝑗
+ (1)), 𝑣𝑖

−(1)/|
𝑥=𝑎

− 

−.𝐴𝑣𝑗
+ (2) − 𝐵𝑣𝑗

+ (1), 𝑣𝑖
−(1)/|

𝑥=−𝑎
− ∫((𝐴

𝜕𝑣𝑖
(2)

𝜕𝑥
, 𝑣𝑗
(1)) + (𝐴′

𝜕𝑣𝑖
(1)

𝜕𝑥
, 𝑣𝑗
(2)))𝑑𝑥

𝑎

−𝑎

} = 

= ∫ (𝐽(∑ 𝑐𝑗𝑚𝑣𝑗
𝑚
𝑗=1 ), 𝑣𝑖)𝑑𝑥

𝑎

−𝑎
, 𝑖 = 1,𝑚, 𝑡 ∈ (0, 𝑇-     (17) 

 

𝑐𝑖𝑚(0) = 𝑑𝑖𝑚, i = 1,m,           (18) 

 

where 𝑑𝑖𝑚 is i-th component of 𝑈0𝑚. 

We multiply (14) by cim(t) and sum over i from 1 to m: 

 

∫ .(
𝜕𝑈𝑚

𝜕𝑡
+ 𝐴1

𝜕𝑈𝑚

𝜕𝑥
), 𝑈𝑚/ 𝑑𝑥

𝑎

−𝑎
= ∫ ((𝐽(𝑈𝑚), 𝑈𝑚)𝑑𝑥

𝑎

−𝑎
.       

 

With help of above shown arguments now we prove that rm(t) is bounded in some time interval ,0, 𝑇𝑚-, 

where 𝑈𝑚(𝑡, 𝑥) = 𝑟𝑚(𝑡)𝜔𝑚(𝑡, 𝑥), 𝑇𝑚 ≈ 𝛰(‖𝑈0𝑚‖
−1
), 𝑇𝑚 ≥ 𝑇 ∀𝑚, and  

 

‖𝑈𝑚‖𝐶(,0,𝑇-;𝐿2,−𝑎,𝑎-) ≤ 𝐶2‖𝑈0‖𝐿2,−𝑎,𝑎-,        (19) 

 

where 𝐶2 is constant and independent from m. 

Then solvability of system equations (13)-(16) or (17)-(18) follows from estimation (19).  

Thus, the sequence *Um+ of approximate solutions of problem (4)-(7) is uniformly bounded in function 

space 𝐶(,0, 𝑇-; 𝐿2,−𝑎, 𝑎-). Moreover, homogeneous system of equations 𝜏𝐸 +
1

𝛼
𝐴𝜉 with respect to τ, ξ has 

only trivial solution. Then it follows from results in [9] that Um → U is week in 𝐶(,0, 𝑇-; 𝐿2,−𝑎, 𝑎-) and 

𝐽(𝑈𝑚,) → 𝐽(𝑈) is week in 𝐶(,0, 𝑇-; 𝐿2,−𝑎, 𝑎-) as 𝑚 → ∞. Further, it can be shown by standard methods 

that limit element is a weak solution of the problem (4)-(7). 

The theorem is proved.  

4. Concluding Remarks  

From this theorem follows that solution existence time depends on the norm of initial vector function. If 

the norm of initial vector function is small value then solution existence time is big value and if the norm of 

initial vector function is big value then the solution existence time is small value. Therefore we prove the 

existence and uniqueness of local on time solution of the initial and boundary value problem for 
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one-dimensional Boltzmann’s moment system of equations with boundary conditions of Maxwell-Auzhan in 

space of functions continuous in time and summable in square by spatial variable.  
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