IJAPM 2014 Vol.4(5): 313-323 ISSN: 2010-362X
DOI: 10.7763/IJAPM.2014.V4.304
DOI: 10.7763/IJAPM.2014.V4.304
Curvelet Based Multiresolution Analysis of Graph Neural Networks
Bharat Bhosale
Abstract—Multiresolution techniques are deeply related to image/signal processing, biological and computer vision, scientific computing, optical data analysis. Improving quality of noisy signals/images has been an active area of research in many years. Although wavelets have been widely used in signal processing, they have limitations with orientation selectivity and hence, they fail to represent changing geometric features along edges effectively. Curvelet transform on the contrary exhibits good reconstruction of the edge data by incorporating a directional component to the conventional wavelet transform and can be robustly used in the analysis of complex neural networks; which in turn are represented by graphs, called Graph Neural Networks.
This paper explores the application of curvelet transform in the analysis of such complex networks. Especially, a technique of Fast Discrete Curvelet Transform de-noising with the Independent Component Analysis (ICA) for the separation of noisy signals is discussed. Two different approaches viz. separating noisy mixed signals using fast ICA algorithm and then applying Curvelet thresholding to de-noise the resulting signal, and the other one that uses Curvelet thresholding to de-noise the mixed signals and then the fast ICA algorithm to separate the de-noised signals are presented for the purpose. The Signal-to-Noise Ratio and Root Mean Square Error are used as metrics to evaluate the quality of the separated signals.
Index Terms—Curvelet transform, graph neural networks, curvelet thresholding, denoising.
Bharat Bhosale is with S. H. Kelkar College of Arts, Commerce and Science, University of Mumbai, Devgad 416613 (M.S.), India (email: bn.bhosale@rediffmail.com).
This paper explores the application of curvelet transform in the analysis of such complex networks. Especially, a technique of Fast Discrete Curvelet Transform de-noising with the Independent Component Analysis (ICA) for the separation of noisy signals is discussed. Two different approaches viz. separating noisy mixed signals using fast ICA algorithm and then applying Curvelet thresholding to de-noise the resulting signal, and the other one that uses Curvelet thresholding to de-noise the mixed signals and then the fast ICA algorithm to separate the de-noised signals are presented for the purpose. The Signal-to-Noise Ratio and Root Mean Square Error are used as metrics to evaluate the quality of the separated signals.
Index Terms—Curvelet transform, graph neural networks, curvelet thresholding, denoising.
Bharat Bhosale is with S. H. Kelkar College of Arts, Commerce and Science, University of Mumbai, Devgad 416613 (M.S.), India (email: bn.bhosale@rediffmail.com).
Cite: Bharat Bhosale, "Curvelet Based Multiresolution Analysis of Graph Neural Networks," International Journal of Applied Physics and Mathematics vol. 4, no. 5, pp. 313-323, 2014.
PREVIOUS PAPER
The Hydrogen Atom from a New Angle
General Information
ISSN: 2010-362X (Online)
Abbreviated Title: Int. J. Appl. Phys. Math.
Frequency: Semi-yearly
APC: 500USD
DOI: 10.17706/IJAPM
Editor-in-Chief: Prof. Haydar Akca
Abstracting/ Indexing: INSPEC(IET), CNKI, Google Scholar, EBSCO, Chemical Abstracts Services (CAS), etc.
E-mail: editor@ijapm.org
-
Dec 26, 2024 News!
IJAPM had implemented online submission system:https: ojs ejournal net index php ijapm about submissionsAll the submission will be received via the system
-
Dec 24, 2024 News!
IJAPM Vol 14, No 4 has been published online! [Click]
-
Sep 20, 2024 News!
IJAPM Vol 14, No 3 has been published online! [Click]
-
Jun 26, 2024 News!
IJAPM Vol 14, No 2 has been published online [Click]
-
Mar 27, 2024 News!
IJAPM Vol 14, No 1 has been published online [Click]
- Read more>>