
 
 Abstract—Support Vector Machines (SVM) were originally 

designed for binary classification. Later it was extended to 
multi-class classification. Various methods have been proposed 
to construct a multi-class aclassifier by combining binary 
classifiers. As it is computationally more expensive to solve 
multi-class problems comparison of these methods using large 
scale problems have not been considered seriously. Especially 
for methods solving multi-class SVM in one step, a much larger 
optimization problem is required. So up to now the 
experiments are confined to small datasets. In this paper we 
give decomposition implementations for two such all-together 
methods. We then compare their performance with three 
methods based on binary classifications:  “One- against-all” , 
“One-against-one” and  DAG SVM. Our experiments indicate 
that one-against-one and DAG methods are suitable for 
practical use than other methods. Results also show that for 
large problems methods by considering all data at once in 
general need fewer support vectors. 
 

Index Terms—Support vector machines, multi-class 
classification, decompositon methods etc.  
 

I. INTRODUCTION 
Support Vector Machines (SVM) was originally designed 

for binary classification. Later on it was extended to multi-
class classification. In general there are two approaches for 
multi-class SVM. One is by constructing and combining 
several binary classifiers while the other is by directly 
considering all data in one optimization formulation.  The 
formulation to solve multi-class SVM problems in one step 
has variables proportional to the number of classes. 
Therefore, for multi-class SVM methodsaa either several 
binary classifiers have to be constructed or a larger 
optimization problem is needed. Hence in general it is 
computationally more expensive to solve a multi-class 
problem than a binary problem with the same number of 
data. Experiments in this paper are confined to small data 
sets.  In this paper we will give a decomposition 
implementation for two such “all-together” methods. Their 
performance is compared with three methods based on 
binary classification “one-against-all”, “one-against-
one”,”DAG SVM”. 

 

II. ONE-AGAINST-ALL, ONE-AGAINST-ONE, DAG SVM 
The earliest used implementation or SVM multi-class 

classification is probably the one-against-all method. It 
constructs k SVM models where k is the number of classes. 
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The ith SVM is trained with all of examples in the ith class 
with positive labels, and all other examples with negative 
labels. Thus given l training data (x1,y1)- - - - (xi,yi)  where  
xi  Є  Rn ,  i=1. . . . l and  yi Є { 1, . . . .,k} is the class of xi,  
the ith SVM solves the following problem: min௪೔್೔഍೔ ଵଶ  ሺݓ௜ሻT   w i   + ܥ ∑ ௝௜௟௝ୀଵߦ  ሺݓ௜ሻT Φ(xj) + bi  ≥  1 െ ௝௜,  if  yjߦ

   = i,  ሺ1ሻ ሺݓ௜ሻT Φ(xj ) + bi  ≤ െ1 ൅ ௝௜ߦ  , if yj   ≠ i         ߦ௝௜ ൒ 0, ݆ ൌ 1 … . . ݈ 

where the training data xi  are mapped to a higher 
dimensional space by the function Φ and C is the penalty 
parameter. min௪೔್೔഍೔ ଵଶ  ሺݓ௜ሻ T    means that we would like to 

maximize 2/צ  .the margin between two groups of data ,צ iݓ
When data are not linear separable, there is a penalty term   ܥ ∑ ௝௜௟௝ୀଵߦ  which can reduce the number of training errors. 
The basic concept behind SVM is to search for a balance 
between the regularization terms and the training errors. 
After solving (1) there are k decision functions: ሺݓଵሻT Φ(x) 
+ b1 . . . . . . ሺݓ௞ሻT Φ(x)+ bk . 

We say x is in the class which has the largest value in the 
decision function: 

Class of x ؠ argmaxi=1…k ሺሺݓ௜ሻT Φ(x) a+ bi )     (2) 

Practically we solve the dual of (1) whose number of 
variables is same as the number of data in (1). Hence k l-
variable quadratic programming problems are solved. 

Another method is one-against –one method. This method 
constructs k(k-1)/2 classifiers where each one is trained on 
data from two classes.  For training data from ith and jth 

classes, we  solve the following binary classification 
problem:    min௪೔ೕ್೔ೕ഍೔ೕ  ଵଶ  ሺݓ௜௝ሻT   w i j + ܥ ∑ ௧௜௝௧ߦ  ቀሺݓ௜௝ሻቁT Φ(xt) + bij  ≥  1 െ ௧௜௝,  if  ytߦ

   = i,     ሺ3ሻ ቀሺݓ௜௝ሻቁT Φ(xt ) + bij  ≤ െ1 ൅ ௧௜௝ߦ  , if yt   =  j         ߦ௧௜௝ ൒ 0, ݆ ൌ 1 … . . ݈ 

There are different methods for testing after all k(k-1)/2 
classifiers are constructed. After some tests voting strategy 
is adapted.Practically we solve the dual of (3) whose 
number of variables is same as the number of data in two 
classes. Hence if in average k each class has 1/k data points, 
we have to solve k(k-1)/2  aquadratic programming 
problems where each of them has about 2l/k variables 

Another method is DAGSVM, Directed Acyclic Graph 
Support Vector Machine. Its training phase is same as one-
against-one method by solving k(k-1)/2 binary SVMs. 
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However in testing phase it uses a rooted binary directed 
acycliac graph which has k(k-1)/2 internal nodes and k 
leaves. Each node is a binary SVM of ith and jth classes. An 
advantage of using DAG is that some analysis of generation 
can be established. We have implemented all the three 
methods using LIBSVM. 

 

III. A METHOD BY CONSIDERING ALL DATA AT ONCE AND 
A DECOMPOSITION IMPLEMENTATION 

The idea is similar to one-against-all approach. It 
constructs k two-class rules where the mth function separates 
training vectors of the class m from other vectors.Hence 
there are k decision functions but all are obtained by solving 
one problem. The formulation is as follows:    min௪,௕,క ଵଶ   ∑ ௠௪೘௧௞௠ୀଵݓ    j + ܥ ∑ ௜௠௟௜ୀଵ   ∑೘ಯ೤೔ߦ ௬௜்ݓ   Φ(xi) + byi

௠்ݓ  ≤    Φ(xi) + bm
 ൅2 െ ௜௠,  if  ytߦ

   = I  ሺ4ሻ         ߦ௜௠ ൒ 0, ݅ ൌ 1 … . . ݈  ,  ݉ א ሼଵ.…..௞ሽ௬௜    
And the decision function is   same as that of one-against-

all method. 
Like binary SVM it is easier to solve the dual problem. 
 

IV. NUMERICAL EXPERIMENTS 

A. Data and Imaplementation  
In this section we presented some experimental results on 

several problems from UCI Repository and Statlog 
collection of machine learning databases.From UCI 
repository we chose the following databases: Iris, wine, 
glass and vowel.  From Statlog Collection we chose the 
following databases:  Vehicle, Segment, dna, Satimage, 
letter and shuttle. Except for the problem dna, we scale all 
training data to be in [-1, 1]a. Then test data are adjusted  
using the same linear transformation. For the problem dna, 
we do not scale its binary attributes. The problem statistics 
are given as follows: 

TABLE I:  PROBLEM STATISTICS  

 
 
The most important criterion for evaluating the 

performance of these methods is their accuracy rate. 
However it is unfair to use only one parameter set and then 
compare these five methods.  Practically for any method 
people find the best parameters by performing the model 
selection. This is conducted on the training data where the 
test data are assumed unknown. Then the best parameter set 
is used for constructing the model for future testing. To 
reduce the search space of parameter sets, here we train all 

datasets only with the RB kernel K(xi ,xj)  ؠ ݁ିఊԡ௫೔ି௫ೕ  ԡమ
.    In 

addition for these methods solving several binary SVMs 
(one-against-one, one-against-all, DAG), for each model we 
consider that C and C and γ of all binary problems are the 
same. Note that this issue does Not arise for two all-togeter 
methods as each model corresponds to only one 
optiamization problem. We use similar stropping criteria for 
all methods. For each problem we stop the optimization 
algorithm  if the KKT violation is less than 10-3.  To be more 
precise, each dual problem of the one-against-one and one-
against-all approaches has the following general term: minఈ ݂ሺߙሻ ߙ்ݕ ൌ 0 0 ൑ ௜ ൑ߙ  ܥ
where yi  ═ േ.  Using similar derivation of the stopping 
criterion of the method by Crammer and Singer, we have      
max(maxఈ೔ ஸ஼ ,୷୧ୀଵ െ׏f(α)i,  max(maxఈ೔ வ଴ ,୷୧ୀିଵ െ׏f(α)i  ) ൑ minሺminఈ೔ ஸ஼ ,୷୧ୀିଵ ׏ ݂ሺߙሻ݅, minሺminఈ೔ வ଴ ,୷୧ୀଵ െ׏ ݂ሺߙሻ݅  ) 
+ 10 -3 

B. Results and Discussions 
 For each problem, we estimate the generalized accuracy 

using different kernel parameters γ and cost parameters C: γ 
= [ 24 , 23 , 22 , . . . . , 2-10  ] and C =[ 212 , 211 , 210 , . . . . , 2-2  ]. 
Therefore for each problem we try 15 x 15 = 225 
combinations. We use two criteria to estimate the 
generalized accuracy. For datasets dna, satimage, letter and 
shuttle where both training and testing sets are available, for 
each pait of (C, γ), the validation performance is measured 
by training 70% of the training set and testing the other 30% 
of the training set. Then we train the whole training set 
using the pair of (C, γ) that achieves the best validation rate 
and predict the test set. The resulting accuracy is presented 
in the “rate”a column of table II. Note that if several (C, γ) 
have the same accuracy in the validation stage, we apply all 
of them to the test data and report the highest rate. For the 
other six smaller datasets where test data may not be 
available, we simply conduct a 10-fold cross validation on 
the whole training data and report the best cross-validation 
rate. 

 
TABLE II:  A  COMPARISON USING THE KERNEL (BEST RATES BOLD -

FACED  

 
 
Table II   presents the results of comparing five methods. 

We present the optimal parameters. We present the optimal 
parameters (C, γ) and their accuracy rates. Note that C & S 
column means  by Crammer and Singer method. It can be 
seen that the optimal parameters (C, γ) are in various ranges  
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for different problems  so it is  essential to test so many 
parameter sets. We also observe that their accuracyis very 
similar. That is , no one is statistically better than the others. 
Comparing to earlier results listed in Statlog, the accuracy 
obtained by SVM is competitive or even better. For example 
among the four problems, dna to shuttle, the one-against-one 
approach obtains better accuracy on satimage and letter. For 
the other two problems, the accuracy is also close to that in 
Table I 

RAINING  TIME TESTING TIME, AND NUMBER OF SUPPORT 
VECTORS (TIME IN SECONDS; BEST TRAINING AND TEST TIME BOLD –

FACED; LEAST NUMBER OF SVS ITALICIZED 

 
We also report the training time, testing time and the 

number of unique support vectors in table III.  Note that 
they are results when solving the optimal model. For small 
problems there are no testing time as we conduct cross 
validation.  

For training time, one-against-one and DAG methods are 
the best. In fact the two methods have the same training 
procedure. Though we have to train as many as k(k-1)/2 
classifiers, as each problem is smaller(only data from two 
classes), the total training time is still less. Note that in table 
V.3 the training time of one-against-one and DAG methods 
may be quite different for the same problem (eg. Vehicle). 
This is due to the difference on the optimal parameter sets. 

Comparing to table II,   the difference on the best rates 
is apparent. The one-against-all method returns the worst 
accuracy for some problems. Overall one-against-all and 
DAG still perform well. The comparison on linear and 
nonlinear kernels also reveals the necessity of using non 
linear kernels in some situations. The observation that 
overall the RBF kernel produuces better accuracy is 
imaportant as otherwise we do not even need to study the 
decomposition methods which is specially designed for the 
nonlinear case. There are  already effective methods to solve 
very large problems with the linear kernel. 

TABLE IV:  A COMPARISON USING THE LINEAR KERNEL (BEST RATES 
BOLD -FACED 

 
Finally we would like to draw some remarks about the 

implementation of these methods. The training time of the 
one-against-all  method can be further improved as now or 
each parameter set, k binary problems are atreated 
independently. That is, kernel  elements used when solving 
one binary problem are not stored and passed to the other 
binary problems through they have the same kernel matrix. 
Hence the same kernel element may be calculated several 
times. However, we expect that even with such 
improvements it still cannot complete with one-against-one 
and DAG on the training time. For all other approaches, 
caches have been implemented so that all problems involved 
in one model can share them. On the otherhand, for all 
approaces, now different models (i.e. different parameter 
sets) are fully independent. There are no caches for passing 
kernel elements from one model to another. 

 

V. CONCLUSION 
 We have discussed decomposition implementations for 

two all-together methods and compared them with three 
methods based on several binary classifiers: one-against-
one,one-against-all,DAG. Experiments on large problems 
show that one-agianst-one and DAG may be more suitable 
for practical use. A future work is to test data with a very 
large number of classes. Especially people have suspected 
that there may have some more difference among these 
methods if the data set has few points in many classes. 
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